666 research outputs found

    Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact

    Get PDF
    This paper is a continuation of Ishitani and Kato (2015), in which we derived a continuous-time value function corresponding to an optimal execution problem with uncertain market impact as the limit of a discrete-time value function. Here, we investigate some properties of the derived value function. In particular, we show that the function is continuous and has the semigroup property, which is strongly related to the Hamilton-Jacobi-Bellman quasi-variational inequality. Moreover, we show that noise in market impact causes risk-neutral assessment to underestimate the impact cost. We also study typical examples under a log-linear/quadratic market impact function with Gamma-distributed noise.Comment: 24 pages, 14 figures. Continuation of the paper arXiv:1301.648

    Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases

    Get PDF
    Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Ã… resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previousl

    Bowing of the band gap pressure coefficients in InGaN alloys

    Full text link
    The hydrostatic pressure dependence of photoluminescence, dEPL/dp, of InxGa1−xN epilayers has been measured in the full composition range 0_x_1. Furthermore, ab initio calculations of the band gap pressure coefficient dEG/dp were performed. Both the experimental dEPL/dp values and calculated dEG/dp results show pronounced bowing and we find that the pressure coefficients have a nearly constant value of about 25 meV/GPa for epilayers with x_0.4 and a relatively steep dependence for x_0.4. On the basis of the agreement of the observed PL pressure coefficient with our calculations, we confirm that band-to-band recombination processes are responsible for PL emission and that no localized states are involved. Moreover, the good agreement between the experimentally determined dEPL/dp and the theoretical curve of dEG/dp indicates that the hydrostatic pressure dependence of PL measurements can be used to quantify changes of the band gap of the InGaN ternary alloy under pressure, demonstrating that the disorder-related Stokes shift in InGaN does not induce a significant difference between dEPL/dp and dEG/dp. This information is highly relevant for the correct analysis of pressure measurement

    Nitrogen Management in Grasslands and Forage-Based Production Systems–Role of Biological Nitrification Inhibition (BNI)

    Get PDF
    Nitrogen (N), being the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive- and intensive- grassland systems. Nitrification and denitrification processes in the soil are the primary drivers generating reactive-N: NO3-, N2O, and NO, and is largely responsible for N-loss and degradation of grasslands. Suppressing nitrification can thus facilitate the retention of soil-N to sustain long-term productivity of grasslands and forage-based production systems. Certain plants can suppress soil nitrification by releasing inhibitors from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI). Recent methodological developments (e.g. bioluminescence assay to detect BNIs from plant-root systems) led to significant advances in our ability to quantify and characterize BNI function in pasture grasses. Among grass-pastures, BNI-capacity is strongest in low-N adapted grasses such as Brachiaria humidicola and weakest in high-N environment grasses such as Italian ryegrass (Lolium perenne) and B. brizantha. The chemical identity of some of the BNIs produced in plant tissues and released from roots has now been established and their mode of inhibitory action determined on nitrifying bacteria Nitrosomonas. Synthesis and release of BNIs is a highly regulated and localized process, triggered by the presence of NH4+ in the rhizosphere, which facilitates the release of BNIs close to soil-nitrifier sites. Substantial genotypic variation is found for BNI-capacity in B. humidicola, which opens the way for its geneticmanipulation. Field studies suggest that Brachiaria grasses suppress nitrification and N2O emissions from soil. The potential for exploiting BNI function (from a genetic improvement and a system perspective) to develop production systems that are low-nitrifying, low N2O-emitting, economically efficient and ecologically sustainable, will be the subject of discussion

    Technologies, Policies, and Measures for Mitigating Climate Change

    Get PDF
    This Technical Paper provides an overview and analysis of technologies and measures to limit and reduce greenhouse gas (GHG) emissions and to enhance GHG sinks under the United Nations Framework Convention on Climate Change (FCCC). The paper focuses on technologies and measures for the countries listed in Annex I of the FCCC, while noting information as appropriate for use by non- Annex I countries. Technologies and measures are examined over three time periods -- with a focus on the short term (present to 2010) and the medium term (2010-2020), but also including discussion of longer-term (e.g., 2050) possibilities and opportunities. For this analysis, the authors draw on materials used to prepare the IPCC Second Assessment Report (SAR) and previous IPCC assessments and reports. The Technical Paper includes discussions of technologies and measures that can be adopted in three energy end-use sectors (commercial/residential/institutional buildings, transportation, and industry), as well as in the energy supply sector and the agriculture, forestry, and waste management sectors. Broader measures affecting national economies are discussed in a final section on economic instruments. A range of potential measures are analyzed, including market-based programs; voluntary agreements; regulatory measures; research, development, and demonstration (RD&D); taxes on GHG emissions; and emissions permits/quotas. It should be noted that the choice of instruments could have economic impacts on other countries. The paper identifies and evaluates different options on the basis of three criteria. Because of the difficulty of estimating the economic and market potential (see Box 1) of different technologies and the effectiveness of different measures in achieving emission reduction objectives, and because of the danger of double-counting the results achieved by measures that tap the same technical potentials, the paper does not estimate total global emissions reductions. Nor does the paper recommend adoption of any particular approaches

    Impact of Virologic Breakthrough and HBIG Regimen on Hepatitis B Recurrence After Liver Transplantation

    Full text link
    The availability of hepatitis B immune globulin (HBIG) and several oral antiviral therapies has reduced but not eliminated hepatitis B virus (HBV) recurrence. We aimed to determine the rate of HBV recurrence after orthotopic liver transplantation (OLT) in relation to virologic breakthrough pre-OLT and HBIG regimens post-OLT. Data from the NIH HBV-OLT database were analyzed. A total of 183 patients transplanted between 2001 and 2007 followed for a median of 42 months (range 1–81) post-OLT were studied. At transplant, 29% were hepatitis B e antigen (HBeAg) (+), 38.5% had HBV DNA > 5 log 10 copies/mL, 74% were receiving antiviral therapy. Twenty-five patients experienced virologic breakthrough before OLT. Post-OLT, 26%, 22%, 40% and 12% of patients received intravenous (IV) high-dose, IV low-dose, intramuscular low-dose and a finite duration of HBIG, respectively as maintenance prophylaxis. All but two patients also received antiviral therapy. Cumulative rates of HBV recurrence at 1 and 5 years were 3% and 9%, respectively. Multivariate analysis showed that listing HBeAg status and HBV DNA level at OLT were the only factors associated with HBV recurrence. In conclusion, low rates of HBV recurrence can be accomplished with all the HBIG regimens used when combined with antiviral therapy including patients with breakthrough pre-OLT as long as rescue therapy is administered pre- and post-OLT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79358/1/j.1600-6143.2010.03046.x.pd

    CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants

    Get PDF
    Purpose To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. Methods Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19(G28R) and CDK19(Y32H). Results We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). Conclusion CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.Peer reviewe

    Using Genetic Diversity in Deep Root Systems of Perennial Forage Grasses and Rice to Capture Carbon in Tropical Soils

    Get PDF
    Agricultural soils have the potential not only to be sinks of carbon dioxide (CO2) but also to mitigate the emissions of this gas to the atmosphere, thus, alleviating global warming. Perennial tropical grasses and rice upland and lowland varieties exhibit a large untapped genetic diversity in their root systems (e.g., deep rooting ability, exudation rates and chemical composition) that, if unlocked, could contribute to increased food production in crop-livestock systems while enhancing soil organic carbon (SOC) in tropical regions. Naturebased solutions that improve crop adaptation and SOC storage in tropical soils could help to remove CO2 from the atmosphere and thereby benefit the global climate system. With the launch of Future Seeds, one of the world’s largest repositories of tropical crop varieties, the Bezos Earth Fund (BEF) granted a major project within the Program of Future of Food. The focus of this BEF funded project is to: (i) develop novel high-throughput phenotyping methods to evaluate genetic diversity of root systems of tropical grasses and rice; (ii) unravel the potential of root systems in crop-livestock systems to replenish soil organic carbon (SOC) in human-intervened areas in tropical soils; (iii) identify and target hotspots/agroecological niches for SOC storage in tropical soils; and (iv) build capacity in conducting research on root systems and SOC storage towards carbon farming in tropical regions. Implementation of land-based SOC storage practices/projects (through carbon markets) based on deep rooting ability of perennial tropical forage grasses and rice cultivars in crop-pasture rotational systems could significantly reduce net emissions from tropical soils

    A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    Get PDF
    Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems..
    • …
    corecore