9,694 research outputs found

    Development of a 25 - 50 watt high efficiency, X-band, traveling wave tube Quarterly report, Nov. 1970 - Jan. 1971

    Get PDF
    Computer design technique of electron gun for use in spacecraft transmitter

    Long time deviation from exponential decay: non-integral power laws

    Full text link
    Quantal systems are predicted to show a change-over from exponential decay to power law decay at very long times. Although most theoretical studies predict integer power-law exponents, recent measurements by Rothe et al. of decay luminescence of organic molecules in solution {Phys. Rev. Lett. 96 (2006) 163601} found non-integer exponents in most cases. We propose a physical mechanism, within the realm of scattering from potentials with long tails, which produces a continuous range of power law exponents. In the tractable case of the repulsive inverse square potential, we demonstrate a simple relation between the strength of the long range tail and the power law exponent. This system is amenable to experimental scrutiny

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    Energy Relaxation at a Hot-Electron Vortex Instability

    Full text link
    At high dissipation levels, vortex motion in a superconducting film has been observed to become unstable at a certain critical vortex velocity v*. At substrate temperatures substantially below Tc, the observed behavior can be accounted for by a model in which the electrons reach an elevated temperature relative to the phonons and the substrate. Here we examine the underlying assumptions concerning energy flow and relaxation times in this model. A calculation of the rate of energy transfer from the electron gas to the lattice finds that at the instability, the electronic temperature reaches a very high value close to the critical temperature. Our calculated energy relaxation times are consistent with those deduced from the experiments. We also estimate the phonon mean free path and assess its effect on the flow of energy in the film.Comment: 8 pages, 7 figure

    Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface

    Get PDF
    The surface relaxations of the rutile TiO2(110)(1×1) clean surface have been determined by O 1 s and Ti 2p3∕2 scanned-energy mode photoelectron diffraction. The results are in excellent agreement with recent low-energy electron diffraction (LEED) and medium energy ion scattering (MEIS) results, but in conflict with the results of some earlier investigations including one by surface x-ray diffraction. In particular, the bridging O atoms at the surface are found to relax outward, rather than inward, relative to the underlying bulk. Combined with the recent LEED and MEIS results, a consistent picture of the structure of this surface is provided. While the results of the most recent theoretical total-energy calculations are qualitatively consistent with this experimental consensus, significant quantitative differences remain

    Photon polarisation entanglement from distant dipole sources

    Full text link
    It is commonly believed that photon polarisation entanglement can only be obtained via pair creation within the same source or via postselective measurements on photons that overlapped within their coherence time inside a linear optics setup. In contrast to this, we show here that polarisation entanglement can also be produced by distant single photon sources in free space and without the photons ever having to meet, if the detection of a photon does not reveal its origin -- the which way information. In the case of two sources, the entanglement arises under the condition of two emissions in certain spatial directions and leaves the dipoles in a maximally entangled state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J. Phys.
    corecore