2,067 research outputs found
PAH Formation in O-rich Planetary Nebulae
Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich
planetary nebulae towards the Galactic Bulge. This combination of oxygen-rich
and carbon-rich material, known as dual-dust or mixed chemistry, is not
expected to be seen around such objects. We recently proposed that PAHs could
be formed from the photodissociation of CO in dense tori. In this work, using
VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised
emission from the [SIV] line, confirming the presence of dense central tori in
all the observed O-rich objects. Furthermore, we show that for most of the
objects, PAHs are located at the outer edge of these dense/compact tori, while
the ionised material is mostly present in the inner parts of these tori,
consistent with our hypothesis for the formation of PAHs in these systems. The
presence of a dense torus has been strongly associated with the action of a
central binary star and, as such, the rich chemistry seen in these regions may
also be related to the formation of exoplanets in post-common-envelope binary
systems.Comment: 14, accepted for publication in the MNRAS Journa
Gas and dust from solar metallicity AGB stars
We study the asymptotic giant branch (AGB) evolution of stars with masses
between . We focus on stars with a solar chemical
composition, which allows us to interpret evolved stars in the Galaxy. We
present a detailed comparison with models of the same chemistry, calculated
with a different evolution code and based on a different set of physical
assumptions. We find that stars of mass experience hot
bottom burning at the base of the envelope. They have AGB lifetimes shorter
than yr and eject into their surroundings gas contaminated
by proton-capture nucleosynthesis, at an extent sensitive to the treatment of
convection. Low mass stars with become
carbon stars. During the final phases the C/O ratio grows to . We find
a remarkable agreement between the two codes for the low-mass models and
conclude that predictions for the physical and chemical properties of these
stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB
phase. The dust produced is also dependent on the mass: low-mass stars produce
mainly solid carbon and silicon carbide dust, whereas higher mass stars produce
silicates and alumina dust. Possible future observations potentially able to
add more robustness to the present results are also discussed.Comment: 27 pages, 24 figures; accepted for publication in MNRA
Disk evaporation in a planetary nebula
We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year
eclipse event of the central star has been attributed to a dust disk) using HST
imaging and VLT spectroscopy, both long-slit and integral field. The central
cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density
core is detected, with radius less than 250 AU, interpreted as a rotating
gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be
the source of the slow wind. The central star is a source of a very fast wind
(1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding
at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an
eccentric binary. M 2-29 presents a crucial point in disk evolution, where
ionization causes the gas to be lost, leaving a low-mass dust disk behind.Comment: 11 pages, accepted for publication in "Astronomy and Astrophysics
The very fast evolution of Sakurai's object
V4334 Sgr (a.k.a. Sakurai's object) is the central star of an old planetary
nebula that underwent a very late thermal pulse a few years before its
discovery in 1996. We have been monitoring the evolution of the optical
emission line spectrum since 2001. The goal is to improve the evolutionary
models by constraining them with the temporal evolution of the central star
temperature. In addition the high resolution spectral observations obtained by
X-shooter and ALMA show the temporal evolution of the different morphological
components.Comment: 2 pages, 2 figures to appear in the Proceedings of the IAU Symp. 323:
"Planetary nebulae: Multi-wavelength probes of stellar and galactic
evolution". Eds. X.-W. Liu, L. Stanghellini and A. Karaka
Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images
This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events
Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula
Extremely high velocity emission likely related to jets is known to occur in
some proto-Planetary Nebulae. However, the molecular complexity of this
kinematic component is largely unknown. We observed the known extreme outflow
from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in
the full frequency range from 73 to 111 GHz with the RSR receiver on the Large
Millimetre Telescope. We detected the molecules SiO, HCN, SO, and CO.
All molecular transitions, with the exception of the latter are detected for
the first time in this source, and all present emission with velocities up to a
few hundred km s. IRAS 16342-3814 is therefore the only source of this
kind presenting extreme outflow activity simultaneously in all these molecules,
with SO and SiO emission showing the highest velocities found of these species
in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component
with a FWHM 700 km s. The extreme outflow gas consists of dense
gas (n 10--10 cm), with a mass larger than
0.02--0.15 M. The relatively high abundances of SiO and SO may
be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society Letter
First release of the IPHAS catalogue of new extended planetary nebulae
Date of Acceptance: 30/06/2014We present the first results of our search for new, extended planetary nebulae (PNe) based on careful, systematic, visual scrutiny of the imaging data from the Isaac Newton Telescope Photometric Ha Survey of the Northern Galactic plane (IPHAS). The newly uncovered PNe will help to improve the census of this important population of Galactic objects that serve as key windows into the late-stage evolution of low- to intermediate-mass stars. They will also facilitate study of the faint end of the ensemble Galactic PN luminosity function. The sensitivity and coverage of IPHAS allows PNe to be found in regions of greater extinction in the Galactic plane and/or those PNe in a more advanced evolutionary state and at larger distances compared to the general Galactic PN population. Using a set of newly revised optical diagnostic diagrams in combination with access to a powerful, new, multiwavelength imaging data base, we have identified 159 true, likely and possible PNe for this first catalogue release. The ability of IPHAS to unveil PNe at low Galactic latitudes and towards the Galactic Anticentre, compared to previous surveys, makes this survey an ideal tool to contribute to the improvement of our knowledge of the whole Galactic PN population.Peer reviewe
Opening PANDORA's box: APEX observations of CO in PNe
CONTEXT:
Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution.
AIMS:
The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the circumstellar shells of evolved stars with the aim to estimate their physical parameters.
METHODS:
Millimetre carbon monoxide (CO) emission is the most useful probe of the warm molecular component ejected by low- to intermediate-mass stars. CO is the second-most abundant molecule in the Universe, and the millimetre transitions are easily excited, thus making it particularly useful to study the mass, structure, and kinematics of the molecular gas. We present a large survey of the CO (J = 3−2) line using the Atacama Pathfinder EXperiment (APEX) telescope in a sample of 93 proto-planetary nebulae and planetary nebulae.
RESULTS:
CO (J = 3−2) was detected in 21 of the 93 objects. Only two objects (IRC+10216 and PN M2-9) had previous CO (J = 3−2) detections, therefore we present the first detection of CO (J = 3−2) in the following 19 objects: Frosty Leo, HD 101584, IRAS 19475+3119, PN M1-11, V* V852 Cen, IC 4406, Hen 2-113, Hen 2-133, PN Fg 3, PN Cn 3-1, PN M2-43, PN M1-63, PN M1-65, BD+30 3639, Hen 2-447, Hen 2-459, PN M3-35, NGC 3132, and NGC 6326.
CONCLUSIONS:
CO (J = 3−2) was detected in all 4 observed pPNe (100%), 15 of the 75 PNe (20%), one of the 4 wide binaries (25%), and in 1 of the 10 close binaries (10%). Using the CO (J = 3−2) line, we estimated the column density and mass of each source. The H2 column density ranges from 1.7 × 1018 to 4.2 × 1021 cm−2 and the molecular mass ranges from 2.7 × 10−4 to 1.7 × 10−1 M⊙
- …