798 research outputs found

    The time as an emergent property of quantum mechanics, a synthetic description of a first experimental approach

    Get PDF
    The "problem of time" in present physics substantially consists in the fact that a straightforward quantization of the general relativistic evolution equation and constraints generates for the Universe wave function the Wheeler-De Witt equation, which describes a static Universe. Page and Wootters considered the fact that there exist states of a system composed by entangled subsystems that are stationary, but one can interpret the component subsystems as evolving: this leads them to suppose that the global state of the universe can be envisaged as one of this static entangled state, whereas the state of the subsystems can evolve. Here we synthetically present an experiment, based on PDC polarization entangled photons, that allows showing with a practical example a situation where this idea works, i.e. a subsystem of an entangled state works as a "clock" of another subsystem

    Dispersion spreading of biphotons in optical fibres and two-photon interference

    Full text link
    We present the first observation of two-photon polarization interference structure in the second-order Glauber's correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.Comment: Accepted for publication in Phys.Rev.Let

    Experimental realization of a measurement conditional unitary operation at single photon level and application to detector characterization

    Full text link
    Our last experimental results on the realization of a measurement-conditional unitary operation at single photon level are presented. This gate operates by rotating by 90o90^o the polarization of a photon produced by means of Type-II Parametric Down Conversion conditional to a polarization measurement on the correlated photon. We then propose a new scheme for measuring the quantum efficiency of a single photon detection apparatus by using this set-up. We present experimental results obtained with this scheme compared with {\it traditional} biphoton calibration. Our results show the interesting potentiality of the suggested scheme.Comment: to appear in Proc. of SPIE meeting, Denver august 200

    Experimental quantum cryptography scheme based on orthogonal states

    Full text link
    Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [\prl 75 (1995) 1239] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets travelling along separate channels. Here we present an experiment realizing this scheme

    Recent experiments performed at "Carlo Novero" lab at INRIM on Quantum Information and Foundations of Quantum Mechanics

    Full text link
    In this paper we present some recent work performed at "Carlo Novero" lab on Quantum Information and Foundations of Quantum Mechanics.Comment: Contribution to III international workshop "Recent advances in Foundations of Quantum Mechanics and Quantum Information. In memory of Carlo Novero

    The PreAmplifier ShAper for the ALICE TPC-Detector

    Full text link
    In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm2^2 and is implemented in AMS's C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p-p and Pb-Pb collisions, the PASA has demonstrated to fulfill all requirements

    Self consistent, absolute calibration technique for photon number resolving detectors

    Full text link
    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.Comment: 9 pages, 2 figure

    Quantum and classical characterization of single/few photon detectors

    Full text link
    This paper's purpose is to review the results recently obtained in the Quantum Optics labs of the National Institute of Metrological Research (INRIM) in the field of single- and few-photon detectors calibration, from both the classical and quantum viewpoint. In the first part of the paper is presented the calibration of a single-photon detector with absolute methods, while in the second part we focus on photon-number-resolving detectors, discussing both the classical and quantum characterization of such devices.Comment: Quantum Matter in pres

    Covid-19 vaccine: A survey of hesitancy in patients with celiac disease

    Get PDF
    (1) Background: COVID-19 vaccination campaigns offer the best hope of controlling the pandemic. However, the fast production of COVID-19 vaccines has caused concern among the general public regarding their safety and efficacy. In particular, patients with chronic illnesses, such as celiac disease (CD), may be more fearful. Information on vaccine hesitancy plays a pivotal role in the development of an efficient vaccination campaign. In our study, we aimed to evaluate COVID-19 vaccine hesitancy among Italian CD patients. (2) Methods: an anonymous questionnaire was sent to CD patients followed at our tertiary referral center for CD in Milan, Italy. Patients were defined as willing, hesitant and refusing. We evaluated the reasons for hesitancy/refusal and the possible determinants, calculating crude and adjusted odds ratios [AdjORs] with 95% confidence intervals [CIs]. (3) Results: the questionnaire was sent to 346 patients with a response rate of 29.8%. Twenty-six (25.2%) of the 103 respondents were hesitant, with a total refusal rate of 4.8%. The main reason was fear of adverse events related to vaccination (68.2%). Among hesitant patients, 23% declared that their opinion was influenced by their CD. The determinants positively influencing willingness to be vaccinated against COVID-19 were adherence to a GFD, perception of good knowledge about COVID-19 and its vaccines, and a positive attitude to previous vaccines (AdjOR 12.71, 95% CI 1.82–88.58, AdjOR 6.50, 95% CI 1.44–29.22, AdjOR 0.70, 95% CI 0.11–4.34, respectively). (4) Conclusions: CD patients should be vaccinated against COVID-19 and a specific campaign to address the determinants of hesitancy should be developed

    Conditioned Unitary Transformation on biphotons

    Full text link
    A conditioned unitary transformation (90o90^o polarization rotation) is performed at single-photon level. The transformation is realized by rotating polarization for one of the photons of a polarization-entangled biphoton state (signal photon) by means of a Pockel's cell triggered by the detection of the other (idler) photon after polarization selection. As a result, polarization degree for the signal beam changes from zero to the value given by the idler detector quantum efficiency. This result is relevant to practical realization of various quantum information schemes and can be used for developing a new method of absolute quantum efficiency calibration
    • …
    corecore