496 research outputs found

    Transport, atom blockade and output coupling in a Tonks-Girardeau gas

    Get PDF
    Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M. K\"ohl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a phenomenological model to simulate such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit

    New spin squeezing and other entanglement tests for two mode systems of identical bosons

    Get PDF
    For any quantum state representing a physical system of identical particles, the density operator must satisfy the symmetrization principle (SP) and conform to super-selection rules (SSR) that prohibit coherences between differing total particle numbers. Here we consider bi-partitite states for massive bosons, where both the system and sub-systems are modes (or sets of modes) and particle numbers for quantum states are determined from the mode occupancies. Defining non-entangled or separable states as those prepared via local operations (on the sub-systems) and classical communication processes, the sub-system density operators are also required to satisfy the SP and conform to the SSR, in contrast to some other approaches. Whilst in the presence of this additional constraint the previously obtained sufficiency criteria for entanglement, such as the sum of the ˆSx and ˆSy variances for the Schwinger spin components being less than half the mean boson number, and the strong correlation test of |haˆm (bˆ†)ni|2 being greater than h(aˆ†)maˆm (bˆ†)nbˆni(m, n = 1, 2, . . .) are still valid, new tests are obtained in our work. We show that the presence of spin squeezing in at least one of the spin components ˆSx , ˆSy and ˆSz is a sufficient criterion for the presence of entanglement and a simple correlation test can be constructed of |haˆm (bˆ†)ni|2 merely being greater than zero.We show that for the case of relative phase eigenstates, the new spin squeezing test for entanglement is satisfied (for the principle spin operators), whilst the test involving the sum of the ˆSx and ˆSy variances is not. However, another spin squeezing entanglement test for Bose–Einstein condensates involving the variance in ˆSz being less than the sum of the squared mean values for ˆSx and ˆSy divided by the boson number was based on a concept of entanglement inconsistent with the SP, and here we present a revised treatment which again leads to spin squeezing as an entanglement test

    Quality and safety of genetic testing in Australia and New Zealand: a review of the current regulatory framework

    Get PDF
    This paper provides an overview of the regulation of quality assurance for genetic testing in Australia and New Zealand and outlines the steps currently being taken to critically appraise and improve the regulatory framework in each country. It aims to contextualize this framework within the broader context of quality and patient safety concerns; and to draw together the concerns and recommendations of the various organizations that have been working to improve quality assurance in this area

    Direct detection of bound ammonium ions in the selectivity filter of ion channels by solid-state NMR.

    Get PDF
    The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15 N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium- selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channel

    Rapid cell-surface prion protein conversion revealed using a novel cell system

    Get PDF
    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Structure and interactions of ultracold Yb ions and Rb atoms

    Get PDF
    In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential energy curves and molecular parameters for several low lying states of the Rb, Yb+^+ system. We employ both a multi-reference configuration interaction (MRCI) and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients are estimated from our {\it ab initio} data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (αd=128.4\alpha_d=128.4 atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb,Rb+^+) channels that were carried out in our work. However, we find that the pseudo potential approximation is rather limited in validity, and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.Comment: 8 pages, 3 figures, 5 table

    Prevalence and determinants of age-related macular degeneration in central Sri Lanka: the Kandy Eye Study

    Get PDF
    Aims To determine the prevalence, associations and risk factors for age-related macular degeneration (ARMD) in central Sri Lanka. Methods The study was a population-based, cross-sectional survey of residents aged ≥40 years in rural Sri Lanka. ARMD was assessed on dilated fundoscopy using the International Age-Related Maculopathy Epidemiology Study Group classification system. Results Of the 1721 subjects identified, 1375 participated (79.9%). Of the participants, 1013 were aged ≥50 years (73.6%). The prevalence of any ARMD (adjusted for study design) was 4.72 (95% CI 2.22 to 7.20)% with 3.82 (95% CI 1.60 to 6.04)% early ARMD and 1.70 (95% CI 0.14 to 3.27)% late ARMD. Age (p<0.001) and Sinhalese ethnicity (p = 0.016) were significantly associated with ARMD. Men had a tendency toward a higher prevalence of ARMD than women, although this was not statistically significant (p = 0.081). Ocular risk factors such as cortical cataract (p = 0.024) and pseudophakia (p = 0.003) were associated with ARMD on the univariate but not multivariate analyses. Illiteracy and the identification of social supports were significantly associated with ARMD on univariate analyses. However, only social support was statistically significant after multivariate analysis (p = 0.024). Conclusions Although the prevalence of ARMD is slightly lower in Sri Lanka than surrounding regions, it contributes to a higher proportion of visual impairment, including blindness. Risk factors include age and Sinhalese ethnicity.L A Goold, K Edussuriya, S Sennanayake, T Senaratne, D Selva, T R Sullivan, R J Casso

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio
    corecore