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In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the
potential-energy curves and molecular parameters for several low-lying states of the Rb, Yb+ system. We employ
both a multireference configuration interaction and a full configuration interaction (FCI) approach. Turning
points, crossing points, potential minima, and spectroscopic molecular constants are obtained for the lowest
five molecular states. Long-range parameters, including the dispersion coefficients, are estimated from our ab
initio data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (αd = 128.4
atomic units) are in good agreement with experiment and previous calculations. We present some dynamical
calculations for (adiabatic) scattering lengths for the two lowest (Yb, Rb+) channels that were carried out in our
work. However, we find that the pseudopotential approximation is rather limited in validity and only applies to
nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are
large and negative in the FCI approximation.
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I. INTRODUCTION

As a gas is cooled down towards μK temperatures,
the quantum nature of the interactions begins to dominate.
With increasing de Broglie wavelength, the long-range tail
of the potential plays a vital role in determining the na-
ture of the interactions, in particular whether the elastic
pairwise interaction is, in the limit of zero temperature,
attractive or repulsive [1,2]. The lower the incident energy of
the ion-atom pair is, the larger the distances are for which
these potentials influence the phase shift. This is critical in
terms of the ultracold regime as to whether cooling, trapping,
and degeneracy can occur. It is extremely important in view of
potential applications in exploring the fundamental process of
ultracold charge transfer [3–6].

Interest has developed in expanding the range of quantum
systems that can be trapped and manipulated on the quantum
scale. Hybrid ion-atom systems are of great interest [7]
since these are inherently strongly interacting systems with a
longer-range potential and inelastic processes can be studied.
Recently, these systems have been explored considering
two-body collisions, in which both collision partners are
translationally cold [8], and on the many-body level [9],
where the sympathetic cooling of the ion with ultracold atoms
was observed. The study of these systems in the quantum
regime can be applied to hybrid atom-ion devices [10] and in
addressing fundamental many-body effects of ionic impurities,
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such as mesoscopic molecule formation [11] and density fluc-
tuations [12]. These devices also afford a unique opportunity to
study reactive collisions (ultracold chemistry) under controlled
conditions, for example, when external electric fields can be
applied to modify the reaction rates and cross sections [9].
Unlike binary cold collisions between ground-state neutral
atoms, which are only elastic or inelastic in nature, reactive
collisions (charge transfer) are a feature of Yb ions immersed in
a gas of trapped alkali-metal atoms as the products Yb + Rb+
are the thermodynamically favored species. Consequently,
curve crossings between electronic states, again absent in the
neutral systems studied to date, can play a significant role in
determining the collision dynamics.

Ultracold neutral atom interactions are characterized by
pure s-wave scattering mediated at long range by the dispersion
forces [13]. Conversely, a bare ion creates a polarization force
directly, and hence the effective cross section is larger, with
significant contributions from higher-order partial waves [14].
Indeed, the usual effective range expansion is modified by
logarithmic terms in the wave-number expansion [15]. In
the last few years theoretical studies of ultracold atom-ion
collisions included the investigation of the occurrence of
magnetic Feshbach resonances with a view to examining the
tunability of the atom-ion interaction focusing on the specific
40Ca+-Na system [16] and calculations of the single-channel
scattering properties of the Ba+ ion with the Rb neutral atom
[17], which suggest the possibility of sympathetic cooling of
the barium ion by the buffer gas of ultracold rubidium atoms
with a considerable efficiency.

In recent experiments [8,9,18], a single trapped ion of
174Yb+ in a Paul trap was immersed in a condensate of neutral
87Rb atoms confined in a magneto-optical trap. A study of
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charge-transfer cross sections showed that the simple classical
Langevin model was inadequate to explain the reaction rates
[9]. However, very little is known about the microscopic
ultracold binary interactions between this ion and the rubidium
atom. In particular, the potential-energy curves and couplings
are not known with any accuracy. Thus the experimental study
of the quantum coherence of charge transfer [9] was based on
schematics of the energy curves. This prompted our in-depth
investigations. Our initial aim was to map the potential-energy
curves to establish the adiabatic states and the static properties
of the molecular ion, in particular the turning points, potential
minima, and crossing points of the lowest molecular energies.
In addition to this, the dissociation energies and molecular
constants would provide useful spectroscopic data for further
investigation. We have made a preliminary estimation of the
pseudopotential which approximates the ultracold interaction.
This information is of great importance for modeling ultracold
charge transfer, in particular the quantum character of chemical
reactivity, and thus developing insights into ultracold quantum
controlled chemistry, for example, when external fields are
applied to influence the reaction rates and reaction channels
[9]. Of course, the presence of a bare charge in a dilute
gas exposes many-body physics features such as exciton and
polariton dynamics, which are also of great interest. It is also of
great interest for laser manipulation of the collision to prevent
losses through charge transfer or create translationally cold
trapped molecular ions via photoassociation.

II. ELECTRONIC STRUCTURE CALCULATION

Beyond the calculation of ionization potentials and dissoci-
ation energies, one of the more challenging tasks for a quantum
chemistry package is the calculation of polarizabilities and
dispersion forces. Since these terms dominate at asymptotic
long range and low energies, their accuracy is paramount in
obtaining a solid foundation for scattering calculations [19]. In
atomic units, the asymptotic singly charged ion-atom potential
has the form [13,14]

V (R) = V∞ − 1

2

[
αd

R4
+ C6

R6
+ C8

R8

]
, (1)

where αd is the dipole polarizability of the neutral atom and
where C6 and C8 are, respectively, the quadrupole and octupole
polarizabilities and V∞ is the asymptotic limit (ionization
potential). R is the ion-atom internuclear separation. Of course,
the ionization potential and the other coefficients will depend
on the electronic configuration and thus on the electronic
state in question. The primary interest, for cold-atom physics,
is the ground state. However, for temperatures in the mK
regime, the excited states have an important role in energy
exchanges through collisions. A recent review of existing
theoretical methods for ground-state polarizability discusses
their relevance to cold-atom physics [19]. Calculations of
polarizability for molecules with heavy atoms, even restricting
interest to the ground state, become increasingly difficult,
partly because of relativistic corrections. However, as is
the case of Rb, electron correlation is, in practice, more
problematic. For example, a basic nonrelativistic Hartree-Fock
calculation [20] gives αd ≈ 522 a.u. It requires the power
of the CCSD(T) (coupled-cluster single and double (triple)

excitations) expansions [20] to account fully for correlation.
The CCSD(T) method gives αd ≈ 352 a.u. (nonrelativistic),
while relativistic corrections take the value to αd ≈ 324
a.u. At this point, the theory is consistent with experiment:
319 ± 6 [21]. However, excited-state calculations are more
problematic.

In our approach we employed the MOLPRO [22] suite of ab
initio quantum chemistry codes (release MOLPRO 2010.1) to
perform all the calculations for this diatomic system (Rb, Yb)+
to obtain the potential-energy curves (PECs) as a function
of bond length. We used a combination of multireference
configuration interaction (MRCI) and full configuration in-
teraction (FCI) approximations. The ab initio potential-energy
curves for this diatomic system are calculated using effective
core potentials (ECP) as a basis set for each atom, which
allows for scalar-relativistic effects to be included explicitly.
The scalar-relativistic effects are included by adding the
corresponding terms of the Douglas-Kroll Hamiltonian to the
one-electron integrals. For the short-range interactions for
the molecular electronic states we used the nonrelativistic
complete-active-space self-consistent field (CASSCF)–MRCI
method [23–26] within the MOLPRO [22] ab initio quantum
chemistry suite of codes.

We used the Stuttgart basis sets and ECPs with core-
polarization potentials (CPPs) for Rb and Yb, the ECP68MDF
potential for Yb and the ECP36SDF potential for Rb, re-
spectively. The inner-shell electrons are modeled using these
effective core potentials for ytterbium (ECP68MDF) [27]
and for rubidium (ECP36SDF) [28,29]. We started at a
bond separation of R = 30a0 and moved into R = 5a0. At
R = 30a0, we perform a self-consistent-field Hartree-Fock
(SCF-HF) calculation on the closed-shell YbRb molecular
ion system to obtain a starting wave function. This is the
starting configuration for the multireference configuration-
interaction MRCI calculation performed in the appropriate
molecular symmetry group. We used an active space of
{6a1,3b1,3b2,0a2} in the C2v Abelian point group with no
closed orbitals. We then perform a multiconfiguration self-
consistent field calculation (MCSCF). The MCSCF calculation
was performed on the lowest five electronic states. These
results were used as the initial wave-function set for a MRCI
calculation to capture the dynamic electron correlation.

Only the valence shells were included in the determination
of the electronic correlation energy. As a test of the basis set
employed, we conducted equivalent calculations on the neutral
YbRb molecule, yielding values as expected, consistent with
those of Meyer and Bohn [30].

The MRCI calculations do not explicitly include relativistic
effects, although this is not important for the entrance collision
channel or the lower Yb (1S) + Rb+ (1S) asymptote as all the
molecular states formed are of �+ symmetry. This is borne
out by the calculated energy of the asymptotic energies of
the a 3�+ and A 1�+ states (Table I). The asymptotes for the
higher 3� and 3�+ states correlate to the Yb (6s6p 3P o) + Rb+
(4p6 1S) atomic products. The multiplet and its associated fine-
structure splitting in the triplet (Yb: 3P o

0,1,2) is considerable:
∼0.3 eV. Only a fully relativistic treatment can accurately
account for the spin-orbit interaction. In a magnetic trap, of
course, the Zeeman splitting and hyperfine structure compli-
cates matters further. Nonetheless, in our first analysis of this
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TABLE I. Comparison between the experimental and calculated molecular asymptotes. The experimental asymptotes are derived from
ionization potentials [31–34]. The calculated asymptotes are obtained by the fit (2) using the LEVEL code [35].

Molecular Estimated E(i)
∞ Experimental �E difference �E difference

symmetry (eV) asymptotic limit (eV) (eV) (%)

X 1�+ 0 0 0
a 3�+ 2.036 2.076 0.040 1.93
A 1�+ 2.036 2.076 0.040 1.93
b 3� 2.045 2.143 0.089 4.15
b 3�+ 2.050 2.143 0.093 4.34

novel system, we can confidently say that a curve crossing
will take place between the A 1�+ and b 3� states, although at
an energy above the Yb+ (2S) + Rb (2S) asymptote, as shown
in Fig. 1. Such a crossing will facilitate a charge-exchange
reaction, as observed in experiment at mK temperatures [8,9].
We have estimated the molecular constants for the four states
that support bound rovibrational states. These constants are
defined by the usual expression for electronic state (channel)
i with asymptotic energy E

(i)
∞ ,

E(i,v,J ) = E(i)
∞ − D(i)

e + h̄ω(i)
e

(
v + 1

2

) − h̄ω(i)
e xe

(
v + 1

2

)2

+B(i)J (J + 1) − D(i)J 2(J + 1)2. (2)

All the constants were derived from the electronic potentials
and were calculated using the LEVEL [35] program (version
8.0). The values are presented in Table II.
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FIG. 1. (Color online) Relative electronic energies for the molec-
ular ion YbRb+ as a function of internuclear distance R (MRCI
approximation). The X 1�+ ground state is the Rb+ channel, while
the lowest-energy ionic ytterbium states, the triplet a 3�+ and singlet
A 1�+ pair, are nearly degenerate with the excited charge-transfer
channels: Rb+ + Yb∗.

A. Scattering length calculation

In the adiabatic approximation the dynamics occur on
decoupled, centrally symmetric potential-energy curves. Us-
ing conventional notation, we let E denote the collision
energy in the center-of-mass frame and mi and ma the ion
and atom masses, respectively. Then, the reduced mass is
μ = mima/(mi + ma). Using atomic units, unless otherwise
stated, the molecular channel i, k2 = 2μ(E − E

(i)
∞ ) � 0 is the

relative wave number squared. The mean-square wave number
has the equivalent temperature T = h̄2〈k2〉/(3kBμ), where kB

is the Boltzmann constant. For this 174Yb+, 87Rb system,
we have k (a.u.) ≈ √

T (K). From Fig. 2 one sees that the
upper limit of the energy range, k = 10−4 a.u., corresponds to
T ≈ 10 nK.

The radial Schrödinger equation for the s-wave in the
channel or potential i is then[

d2

dR2
+ k2 − 2μVi(R)

]
χi(k,R) = 0, (3)

where Vi(R) ∼ −αd/(2R4) as R → ∞. Then the phase shift
δi(k) has its usual definition,

χi(k,R) ∼ sin[kR + δi(k)], R → ∞. (4)

At ultracold temperatures, k → 0, the effective range expan-
sion for the s wave [15], takes the form

k cot δi(k) = − 1

as

+ πμαd

3a2
s

k

+4μαd

3as

k2 ln

(
k

4
√

μαd

)
+ O(k2). (5)

We note the logarithmic terms in k as opposed to the
usual quadratic term for a short-range force. Clearly, at zero

TABLE II. Molecular constants for the four lowest states sup-
porting rovibrational bound states in the MRCI approximations. The
equilibrium bond length re is in atomic units, the dissociation energy
De is in eV, and both were obtained from the ab initio data. The
rovibrational constants defined in Eq. (2) are in cm−1. Note that the
b 3�+ state is repulsive.

Molecular re ωe ωexe B D (10−9 De

symmetry (units of a0) (cm−1) (cm−1) (cm−1) cm−1) (eV)

X 1�+ 9.031 33.77 −0.22 0.012 73 7.0047 0.2202
a 3�+ 10.142 34.94 0.04 0.010 10 3.3843 0.6653
A 1�+ 14.362 16.807 0.38 0.005 05 2.1440 0.1085
b 3� 10.108 15.24 −0.21 0.001 02 16.812 0.0061
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FIG. 2. The effective-range function, kcotδ(k), in the limit of low
energy as a function of the relative wave number k and equivalent
temperature, for the X 1�+ state in the MRCI approximation. The
solid line is the value obtain by numerical integration. The dashed
curve displays the low-temperate expansion (5). For this system, it
is clear that replacing the scattering by a temperature-independent
pseudo-potential (7) is only valid in the nK regime.

temperature, the s-wave scattering length as has the usual
expression,

ai,s = lim
k→0

− tan δi(k)

k
. (6)

The significance of the scattering length for ultracold gases is
as a strength parameter for a contact two-body pseudopotential
that can, in turn, be used in the many-body Hamiltonian
appropriate for an ion embedded in a cloud of cold atoms.
Thus, for channel i and ion-atom separation 
R, we have the
zero-temperature pseudopotential [36] (operating to the right):

Ui( 
R) = 2πh̄2

μ
ai,s δ( 
R)

∂

∂R
R . (7)

In general, the pseudopotential can be made energy depen-
dent: ai,s is replaced by a(k), where k is the wave number. At
distances near the equilibrium bond length re the interaction
between the ion charge and the dipole moment in the atom
results in a deep potential well for which the thermal de
Broglie wavelength λ is small, with the potential slowly
varying, and a semiclassical approximation is justified. At
long range, where the dipole potential is the dominant term,
the radial Schrödinger equation (3) can be solved in closed
analytic form. Connecting the exact asymptotic solution with
the semiclassical approximation at a matching distance Rc

gives the phase shift in terms of a simple quadrature [37,38].
This, in turn, yields an elegant and simple expression for the
scattering length,

as = −√
μαd tan

(
� − π

4

)
, (8)

where

� =
∫ ∞

R0

√
−2μV (R) dR, (9)

with R0 being the zero-energy classical turning point, i.e., the
smallest value for the solution of V (R0) = 0. The phase (9)
is the accumulation of the inner (semiclassical) phase as far
as the matching radius Rc and the outer (asymptotic) phase
beyond the matching radius in the region where the potential
is approximately a pure dipole. This can be simply written
as [37,38] � = �< + �>, where

�< =
∫ Rc

R0

√
−2μV (R)dR, �> = √

μαd

1

Rc

. (10)

In accordance with Levinson’s theorem, the phase � passes
through many cycles of π at the threshold energy. For a
dipole potential and within the semiclassical approximation,
the number of bound states is given by

ns = int[�/π − 3/4] + 1. (11)

The large, but uncertain, value of the phase leads one to the
conjecture [37] that there is equal likelihood that the scattering
length is positive or negative, and indeed, it may be infinitely
large in magnitude. This sensitivity of scattering length to
phase shift, which, in turn, depends on the interatomic potential
amplified by the large reduced mass, means that obtaining
accurate and reliable theoretical estimates of the scattering
length is extremely difficult. Nonetheless, one of the aims of
this paper is to make a first estimate of these values.

III. RESULTS

A. Ground state

First, we consider the X 1�+ electronic potential cor-
responding to the separated ion-atom asymptotic channel,
Rb+ (4p6 1S) + Yb (6s2 1S). In this case, the ytterbium atom
experiences the long-range single charge of the Rb ion, and
the electronic potential has the leading-order term of order
R−4. As a test of the accuracy of the electronic energy curve
we obtained, we estimated the ytterbium polarizability by
curve fitting the potential to − 1

2αdR
−4 at values of R >

30 a.u. We used a least-squares fit over 15 points using a
constant and R−4 as independent variables for which we
computed the coefficients corresponding, respectively, to the
ionization energy and the polarizability of the atomic species.
For the ground electronic state X 1�+, which corresponds
asymptotically to Rb+ (4p6 1S) and neutral Yb(6s2 1S), the
hyperpolarizability terms have a small contribution, so at
internuclear distances beyond 30a0 they may be neglected.
From this approach we find estimates of the polarizability of
ytterbium αd ≈ 128.5 in both MRCI and FCI approximations,
which are in suitable agreement with results from previous
investigations; see Table III.

In order to obtain estimates for the scattering length, we
performed numerical integration of the radial Schrödinger
equation (3) to determine the phase shift using the Runge-Kutta
method along with a numerical quadrature (Simpson’s rule) for
the semiclassical approximation. The numerical integration
was initiated just to the left of the classical turning point and
integrated outwards to fit to the form (4).
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The phase shift was determined by numerically integrating
the radial Scrödinger equation (3) using a simple fourth-order
Runge-Kutta scheme starting within the classically forbidden
region out to the matching radius Rc ∼ 37a0. This distance
was sufficiently large enough to ensure that beyond this
value the potential is then suitably represented by the multipole
expansion (1). The leading-order dipole term with the value
αd = 128.4894 gave ns = 155 bound states for the MRCI
calculation. The full configuration interaction calculation gives
ns = 155. From this we find a large negative scattering
length, indicating the presence of a virtual bound state at
E = (2μa2

s )−1. Our calculated polarizability (see Table III)
falls within the range of previous theoretical and experimental
results.

The de Broglie wavelength increases as k → 0. For k <

10−3 (T � 1 μK) the collisional properties are determined by
s-wave scattering. We are already well into the nK regime
when k = 10−8, for which convergence of the phase shift to
its value in the low-energy limit, to reasonable accuracy, can
be assumed. Integration is carried out to a distance for which
the long-range dispersion potentials have a negligible effect
on the phase, k2 � μαd/R

4. The method of extrapolation
of the zero-energy wave function is less computationally
expensive and can be used as a test against the results for very
low energy scattering. The numerically obtained low-energy
s-wave phase shifts are in good agreement with those from the
low-energy phase-shift expansion (5) using the semiclassical
scattering length (aSC = 2816.7 in the MRCI approximations),
as illustrated in Fig. 2 for the range of kas � 0.3.

The variation in the effective scattering length,

a(k) = − tanδ(k)

k
, (12)

with relative wave number k, is shown in Fig. 3. We also
consider a comparison with the linear expansion of Eq. (5) via
the binomial approximation, which gives, in this case,

a(k) = as

(
1 − πμαd

3as

k

)−1

≈ as

(
1 + πμαd

3as

k

)
. (13)

In Fig. 3 the numerical calculation (solid line with circles)
deviates from both the linear and nonlinear expansions, even
at these extremely low temperatures. Based on these prelim-
inary calculations, current experiments, operating in the μK
range, would have great difficulty in estimating the scattering
length. The linear approximation is adequate for temperatures

TABLE III. Static electric-dipole polarizability αd (a.u.) for the
ground state of Yb (6s2 1S0) compared with previous experimental
and theoretical work.

αd Comment

128.5 This work (MRCI)
128.4 This work (FCI)
141 ± 6 Dzuba and Derevianko; configuration-interaction

method and many-body perturbation theory
(CI + MBPT) [39]

136.4 ± 4.0 Experimental data [40]
157.3 Chu et al.; density functional theory [41]
141 ± 35 Linear response method [42]

0.0 2.0 4.0 6.0 8.0 10.0

2800

3000

3200

3400

3600

3800

k (10−5 a.u.)

a 
(

k 
)(

a.
u.

)

0.0 0.4 1.6 3.6 6.4 10.0
Temperature (nK)

FIG. 3. The energy-dependent scattering length a(k), defined by
Eq. (12), for the ground-state potential curve (X 1�+) in the MRCI
approximations. The solid curve is the result of numerical integration,
the dotted line is the linear approximation (13), and the dashed curve is
the nonlinear expansion (5). Even over this ultracold (nK) temperature
range the variation of the effective scattering length is significant.

T < 1 nK, while expansion (5) breaks down at T = 1 nK, as
higher-order terms then become significant.

B. Excited states

In ion-trap experiments, the primary interaction will be the
Yb+(6s 2S) ion colliding with the neutral Rb (5s 2S), which
may occur in the A 1�+ singlet or the a 3�+ triplet state. We
see (Fig. 1) that the triplet has a lower minimum and shorter
bond length and because of the statistical weight is the more
important channel. In the separated-atom limit, this channel
lies 2.036 eV above the ground state, corresponding to the
difference in ionization potentials of Rb and Yb. Considering
the long-range numerical values of the potential, we find that
the hyperpolarizabilities in the multipole expansion (1) need to
be taken into account. Little spectroscopic information about
quadrupole or octupole moments for the heavier alkali-metal

TABLE IV. Molecular constants and multipole coefficients ob-
tained from the ab initio data for the lowest three states of YbRb+

in the MRCI approximation. The equilibrium bond length re and the
dissociation energy De were obtained using a spline fit to the data. C8

and E∞ were obtained using a least-squares fit. The scattering length
given by as is in atomic units.

Molecular re De C8 E∞ as

symmetry (a0) (eV) (108 a.u.) (eV) (a0)

X 1�+ 9.024 0.2244 0 2815
A 1�+ 14.179 0.1161 1.770 2.036 6766
a 3�+ 10.135 0.6785 1.786 2.036 9646

022716-5



LAMB, MCCANN, MCLAUGHLIN, GOOLD, WELLS, AND LANE PHYSICAL REVIEW A 86, 022716 (2012)

TABLE V. Molecular constants and multipole coefficients ob-
tained from the ab initio data for the lowest three states of YbRb+

in the FCI approximation. The equilibrium bond length re and the
dissociation energy De were obtained using a spline fit to the data. C8

and E∞ were obtained using a least-squares fit. The scattering length
given by as is in atomic units.

Molecular re De C8 E∞ as

symmetry (a0) (eV) (108 a.u.) (eV) (a0)

X 1�+ 9.031 0.2227 0 −11 594
A 1�+ 14.184 0.1150 0.7020 2.035 −59 036
a 3�+ 10.134 0.6776 1.2172 2.035 −3606

atoms exists as it is very difficult to precisely measure the
oscillator strengths. For the higher-order multipole terms we
obtained solutions first by fitting the data to Eq. (1). In this
case, we chose to fix the dipole and quadrupole polarizabilities
by their experimental values αd = 319.2 a.u [21] and C6 =
6480 a.u. [43], respectively. We then fitted to our data points to
obtain C8 using a least-squares fitting procedure. The results in
the MRCI and FCI approximations are given in Tables IV and
V, respectively. In both cases (MRCI and FCI) the scattering
length as for the ground electronic state X 1�+ is shown. The
dipole polarizabilities for the ground state of Yb from the
MRCI and FCI approximations are, respectively, 128.5 and
128.4 (cf. Table III).

For two electrons outside a closed shell one expects both
the MRCI and FCI results to be in suitable agreement with
each other. Figure 1 illustrates only the MRCI results as
on the scale shown the FCI results are identical. From our
ab initio results, while it is seen that the equilibrium bond
distance re and the dissociation energy De are practically
identical in the MRCI and FCI approximations, the scattering
lengths are widely different. This we attribute to the difficulty
of accurately obtaining the dispersion coefficients from the
long-range tail of the potential (1) in both approximations,
which are subsequently used in numerically solving the
radial Schrödinger equation (3) for the phase shift and
corresponding scattering length. We illustrate this fact with
the values tabulated in Tables IV and V for the scattering
length.

IV. CONCLUSIONS

We have investigated the electronic structure of the low-
lying states of the diatomic molecular ionic system containing
a ytterbium ion and a rubidium atom, with relevance to
ultracold chemistry, in particular, charge-transfer processes
involving Yb ions and Rb atoms. We employed both a
multireference configuration interaction approach and a full
configuration interaction approach to obtain turning points,
crossing points, potential minima, and spectroscopic molecu-
lar constants for the lowest five molecular states. Long-range
parameters, including the dispersion coefficients are estimated
from our ab initio data. We find a near degeneracy of the Yb+
ground state with excited charge-transfer channels. The results
for the long-range potential tail including the polarizability are
seen to be in suitable agreement with previous experimental
and theoretical work. We present preliminary results for the
ultracold elastic scattering amplitude for the ytterbium ion
colliding with the rubidium atom based on our ab initio data
including both asymptotic ionic channels. These estimates,
assuming pure adiabatic elastic scattering, indicate that the
Yb+ ion collisions with Rb atom interactions are attractive
for both the singlet and triplet states. Effective range theory
is used to derive the corresponding pseudopotential, which
has a strong energy dependence, even in the nK regime not
well represented by the single-parameter scattering length.
The well-known sensitivity of the scattering length to changes
in the potential indicates that our estimates are rather crude.
Nonetheless, the potential-energy curves are accurate in the
region where charge exchange is important and thus offer
prospects of studying this process under quantum controlled
conditions.
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