Energy is a crucial concept within classical and quantum physics. An
essential tool to quantify energy is the Hamiltonian. Here, we consider how to
define a Hamiltonian in general probabilistic theories, a framework in which
quantum theory is a special case. We list desiderata which the definition
should meet. For 3-dimensional systems, we provide a fully-defined recipe which
satisfies these desiderata. We discuss the higher dimensional case where some
freedom of choice is left remaining. We apply the definition to example toy
theories, and discuss how the quantum notion of time evolution as a phase
between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of
Physics topical collection on Foundational Aspects of Quantum Informatio