381 research outputs found
Effect of pre-season training phase on anthropometric, hormonal and fitness parameters in young soccer players
The aims of the study were to investigate 1) the effect of 8 weeks of PSP training on anthropometrics, salivary hormones and fitness parameters in youth soccer players, 2) the correlations between fitness and hormonal parameters, and 3) the impact of the experience of the coach and his methodology of training on these parameters. Weight, height, BMI, pubertal development (PDS), salivary Cortisol (sC), salivary Testosterone (sT), salivary sDHEAS, intermittent tests (VO2max), and countermovement jump test (CMJ) modifications of 35 youth soccer players (age: 14±0 yrs; BMI: 20.8±1.8 k/m2 ) from two Italian clubs (“Lupa Frascati” -LF-; “Albalonga” -AL) were analysed. A significant (p<0.05) time by club effect was observed in sC (F(1,31) = 9.7, ES = 1.13), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.94), and VO2max (F(1,28) = 8.5, ES = 1.10). Statistical differences (p<0.05) in weight (F(1,32) = 25.5, ES = 0.11), sC (F(1,31) = 32.1, ES = 1.43), sT/sC ratio (F(1,31) = 10.1, ES = 0.97), sDHEAS/sC ratio (F(1,31) = 6.3, ES = 0.70), and VO2max (F(1,28) = 64.3, ES = 1.74) were found within time factor. Between clubs, differences (p<0.05) in sC (F(1,32) = 8.5, ES = 1.17), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.50), and VO2max (F(1,28) = 8.5, ES = 1.10) were found. CMJ was inversely correlated with sDHEAS (r = -0.38) before PSP, while Δ of CMJ showed significant correlations with Δ of sC (r = 0.43) and ΔVO2max was inversely correlated with ΔBMI (r = -0.54) and ΔsC (r = -0.37) in all subjects. Considering each single club, ΔVO2max showed correlations with ΔBMI (r = -0.45) in AL, while ΔCMJ showed correlations with ΔPDS (r = 0.72) in LF club. Since the PSP is often limited training time to simultaneously develop physical, technical and tactical qualities, an efficient method to distribute the training load is important in youth soccer players to increase the performance and to avoid injuries
Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Avoid Processing Tomato Leaf Damage during Chilling Stress
Chilling stress limits processing tomato growth and yield, leading to high losses.
An approach to increase the sustainability of crop production could involve the use of beneficial
microorganisms. The objectives of this research were to investigate: (i) the ecacy of Funneliformis
mosseae and Paraburkholderia graminis C4D1M in avoiding processing tomato damage during severe
chilling stress; (ii) the synergic eect of the two microorganisms inoculated as a consortium; (iii) if
the putative microorganism eects depended on the processing tomato genotype. To achieve these
objectives, two experiments were carried out. In the first experiment, a modern genotype was
assessed, while three genotypes were evaluated in the second experiment. At sowing, F. mosseae was
mixed with peat. Nine days after sowing, P. graminis was inoculated close to the plant\u2019s root collar.
After 40 days of seed sowing, chilling treatment was performed at 1 C for 24 h. F. mosseae mainly
reduced the cell membrane injuries in term of electrolytic leakage and eciency of photosystem II,
after the chilling stress in both experiments. Conversely, in the second experiment, the consortium
improved the seedling regrowth, increasing the eciency of photosystem II. In addition, modern
genotypes inoculated with microorganisms showed a better seedling regrowth.Chilling stress limits processing tomato growth and yield, leading to high losses. An approach to increase the sustainability of crop production could involve the use of beneficial microorganisms. The objectives of this research were to investigate: (i) the efficacy of Funneliformis mosseae and Paraburkholderia graminis C4D1M in avoiding processing tomato damage during severe chilling stress; (ii) the synergic effect of the two microorganisms inoculated as a consortium; (iii) if the putative microorganism effects depended on the processing tomato genotype. To achieve these objectives, two experiments were carried out. In the first experiment, a modern genotype was assessed, while three genotypes were evaluated in the second experiment. At sowing, F. mosseae was mixed with peat. Nine days after sowing, P. graminis was inoculated close to the plant's root collar. After 40 days of seed sowing, chilling treatment was performed at 1 \ub0C for 24 h. F. mosseae mainly reduced the cell membrane injuries in term of electrolytic leakage and efficiency of photosystem II, after the chilling stress in both experiments. Conversely, in the second experiment, the consortium improved the seedling regrowth, increasing the efficiency of photosystem II. In addition, modern genotypes inoculated with microorganisms showed a better seedling regrowth
A Summary of the Endocrine Society Clinical Practice Guidelines on Congenital Adrenal Hyperplasia due to Steroid 21-Hydroxylase Deficiency
Steroid 21-hydroxylase deficiency accounts for about 95% of cases of congenital adrenal hyperplasia (CAH). Newborns are currently being screened for the classical forms of this disease throughout the United States and in 12 other countries. As such, it seems important to develop the best practice guidelines for treating not only infants and children, but affected adults as well. This report gives a brief overview of the most recent expert opinion and clinical practice guidelines for CAH as formulated by The Endocrine Society Task Force
Double gamers—can modified natural regulators of higher plants act as antagonists against phytopathogens? The case of jasmonic acid derivatives
As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae, F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani, Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi
Relationship of CYP21A2 genotype and serum 17-hydroxyprogesterone and cortisol levels in a large cohort of Italian children with premature pubarche.
ObjectivePremature pubarche (PP) is the most frequent sign of nonclassic congenital adrenal hyperplasia (NCCAH) due to 21-hydroxylase deficiency in childhood. The aim of this study was to assess the relationship between the CYP21A2 genotype and baseline and ACTH-stimulated 17-hydroxyprogesterone (17-OHP) and cortisol serum levels in patients presenting with PP.Patients and methodsA total of 152 Italian children with PP were studied. Baseline and ACTH-stimulated 17-OHP and cortisol serum levels were measured and CYP21A2 gene was genotyped in all subjects.ResultsBaseline and ACTH-stimulated serum 17-OHP levels were significantly higher in NCCAH patients than in both heterozygotes and children with idiopathic PP (IPP). Of the patient population, four NCCAH patients (7.3%) exhibited baseline 17-OHP values <2 ng/ml (6 nmol/l). An ACTH-stimulated 17-OHP cutoff level of 14 ng/ml (42 nmol/l) identified by the receiver-operating characteristics curves showed the best sensitivity (90.9%) and specificity (100%) in distinguishing NCCAH patients. This value, while correctly identifying all unaffected children, missed 9% of affected individuals. Cortisol response to ACTH stimulation was <18.2 μg/dl (500 nmol/l) in 14 NCCAH patients (28%) and none of the heterozygotes or IPP children. Among the 55 NCCAH patients, 54.5% were homozygous for mild CYP21A2 mutations, 41.8% were compound heterozygotes for one mild and one severe CYP21A2 gene mutations, and 3.6% had two severe CYP21A2 gene mutations.ConclusionIn children with PP, baseline 17-OHP levels are not useful to rule out the diagnosis of NCCAH, which is accomplished by means of ACTH testing only. The different percentages of severe and mild CYP21A2 gene mutations found in PP children compared with adult NCCAH patients is an indirect evidence that the enzyme defect is under-diagnosed in childhood, and it might not lead to the development of hyperandrogenic symptoms in adulthood. Stress-dose glucocorticoids should be considered in patients with suboptimal cortisol response to ACTH stimulation.</jats:sec
Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles
While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity
Rational design and validation of a Tip60 histone acetyltransferase inhibitor
Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer
Intratumoral CRH modulates immuno-escape of ovarian cancer cells through FasL regulation
Although corticotropin-releasing hormone (CRH) and Fas ligand (FasL) have been documented in ovarian carcinoma, a clear association with tumour progression and immuno-escape has not been established. FasL plays an important role in promoting tumour cells' ability to counterattack immune cells. Here, we examined immunohistochemically the expression of CRH, CRHR1, CRHR2 and FasL in 47 human ovarian cancer cases. The ovarian cancer cell lines OvCa3 and A2780 were further used to test the hypothesis that CRH might contribute to the immune privilege of ovarian tumours, by modulating FasL expression on the cancer cells. We found that CRH, CRHR1, CRHR2 and FasL were expressed in 68.1, 70.2, 63.8 and 63.8% of the cases respectively. Positivity for CRH or FasL expression was associated with higher tumour stage. Finally, CRH increased the expression of FasL in OvCa3 and A2780 cells through CRHR1 thereby potentiated their ability to induce apoptosis of activated peripheral blood lymphocytes. Corticotropin-releasing hormone produced by human ovarian cancer might favour survival and progression of the tumour by promoting its immune privilege. These findings support the hypothesis that CRHR1 antagonists could potentially be used against ovarian cancer
- …