2,506 research outputs found

    Feasibility study of resistance welding of aluminum alloys, stainless steel, and titanium in a hard vacuum Final report, Jun. 27, 1967 - Feb. 29, 1968

    Get PDF
    Tensile strength and X ray analysis of resistance spot welded aluminum and stainless steel alloy

    Decoherence in ion traps due to laser intensity and phase fluctuations

    Get PDF
    We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.Comment: 2 figures, submitted to PR

    Sympathetic Cooling of Trapped Cd+ Isotopes

    Get PDF
    We sympathetically cool a trapped 112Cd+ ion by directly Doppler-cooling a 114Cd+ ion in the same trap. This is the first demonstration of optically addressing a single trapped ion being sympathetically cooled by a different species ion. Notably, the experiment uses a single laser source, and does not require strong focusing. This paves the way toward reducing decoherence in an ion trap quantum computer based on Cd+ isotopes.Comment: 4 figure

    Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions

    Full text link
    A method for gaining information about the phonon-number moments and the generalized nonlinear and linear quadratures in the motion of trapped ions (in particular, position and momentum) is proposed, valid inside and outside the Lamb-Dicke regime. It is based on the measurement of first time derivatives of electronic populations, evaluated at the motion-probe interaction time t=0. In contrast to other state-reconstruction proposals, based on measuring Rabi oscillations or dispersive interactions, the present scheme can be performed resonantly at infinitesimal short motion-probe interaction times, remaining thus insensitive to decoherence processes.Comment: 10 pages. Accepted in JPhys

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori

    Get PDF
    We present an experimental and numerical study of the effects of decoherence on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM) tori in its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and densities which necessitate a quantum description. This real quantum system is coupled to the environment via spontaneous emission. The degree of coupling is varied and the effects of this coupling on the quantum coherence of the system are studied. When the classical diffusion through a partially broken torus is < hbar, diffusion of quantum particles is inhibited. We find that increasing decoherence via spontaneous emission increases the transport of quantum particles through the boundary.Comment: 19 pages including 6 figure

    Linearity in the non-deterministic call-by-value setting

    Full text link
    We consider the non-deterministic extension of the call-by-value lambda calculus, which corresponds to the additive fragment of the linear-algebraic lambda-calculus. We define a fine-grained type system, capturing the right linearity present in such formalisms. After proving the subject reduction and the strong normalisation properties, we propose a translation of this calculus into the System F with pairs, which corresponds to a non linear fragment of linear logic. The translation provides a deeper understanding of the linearity in our setting.Comment: 15 pages. To appear in WoLLIC 201

    Many-body dephasing in a trapped-ion quantum simulator

    No full text
    How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics. In this Letter, we analyze and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator. We measure the temporal fluctuations in the average magnetization of a finite-size system of spin-1/2 particles. We experiment in a regime where the properties of the system are closely related to the integrable Hamiltonian with global spin-spin coupling, which enables analytical predictions for the long-time nonintegrable dynamics. The analytical expression for the temporal fluctuations predicts the exponential suppression of temporal fluctuations with increasing system size. Our measurement data is consistent with our theory predicting the regime of many-body dephasing
    • …
    corecore