3,043 research outputs found

    Many-body approach to infinite non-periodic systems: application to the surface of semi-infinite jellium

    Get PDF
    A method to implement the many-body Green function formalism in the GW approximation for infinite non periodic systems is presented. It is suitable to treat systems of known ``asymptotic'' properties which enter as boundary conditions, while the effects of the lower symmetry are restricted to regions of finite volume. For example, it can be applied to surfaces or localized impurities. We illustrate the method with a study of the surface of semi-infinite jellium. We report the dielectric function, the effective potential and the electronic self-energy discussing the effects produced by the screening and by the charge density profile near the surface.Comment: 11 pages, 4 figure

    Spectral Curves and Localization in Random Non-Hermitian Tridiagonal Matrices

    Get PDF
    Eigenvalues and eigenvectors of non-Hermitian tridiagonal periodic random matrices are studied by means of the Hatano-Nelson deformation. The deformed spectrum is annular-shaped, with inner radius measured by the complex Thouless formula. The inner bounding circle and the annular halo are stuctures that correspond to the two-arc and wings observed by Hatano and Nelson in deformed Hermitian models, and are explained in terms of localization of eigenstates via a spectral duality and the Argument principle.Comment: 5 pages, 9 figures, typographical error corrected in reference

    C3N4 for CO2 photoreduction: catalyst performance and stability in batch and continuous reactor

    Get PDF
    In this study, various C3N4 samples were prepared and characterized. CO2 photoreduction was carried out by using C3N4 as powder and coated on glass support in a batch reactor or embedded in a Nafion membrane in a continuous reacto

    Ab-initio self-energy corrections in systems with metallic screening

    Full text link
    The calculation of self-energy corrections to the electron bands of a metal requires the evaluation of the intraband contribution to the polarizability in the small-q limit. When neglected, as in standard GW codes for semiconductors and insulators, a spurious gap opens at the Fermi energy. Systematic methods to include intraband contributions to the polarizability exist, but require a computationally intensive Fermi-surface integration. We propose a numerically cheap and stable method, based on a fit of the power expansion of the polarizability in the small-q region. We test it on the homogeneous electron gas and on real metals such as sodium and aluminum.Comment: revtex, 14 pages including 5 eps figures v2: few fixe

    T Dependence of the Mechanical Properties on the Microstructural Parameters of WC-Co

    Get PDF
    Abstract The effect of binder content and WC grain size on the mechanical properties is widely investigated in literature. An increase in binder amount and WC grain size leads to a decrease in hardness and an increase in fracture toughness. Actually, these correlations are related to the influence of binder content and WC grain size through the contiguity and mean binder free path, which are the microstructural parameters that affect the mechanical properties. The aim of this study is to verify the dependence of the two microstructural parameters that govern the WCCo mechanical behaviour, namely the contiguity and mean binder free path, on the mechanical properties of an extended range of WC-Co samples, which differ in terms of Co content and tungsten carbide grain size

    Connecting scaling with short-range correlations

    Get PDF
    We reexamine several issues related to the physics of scaling in electron scattering from nuclei. A basic model is presented in which an assumed form for the momentum distribution having both long- and short-range contributions is incorporated in the single-particle Green function. From this one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction and short-range repulsion, and can obtain the density-density polarization propagator and hence the electromagnetic response and scaling function. For the latter, the shape of the scaling function and how it approaches scaling as a function of momentum transfer are both explored.Comment: 24 pages, 15 figures. A reference has been corrected and update
    • …
    corecore