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A method to implement the many-body Green function formalism in theGW approximation for infinite
nonperiodic systems is presented. It is suitable to treat systems of known “asymptotic” properties which enter
as boundary conditions, while the effects of the lower symmetry are restricted to regions of finite volume. For
example, it can be applied to surfaces or localized impurities. We illustrate the method with a study of the
surface of semi-infinite jellium. We report the dielectric function, the effective potential, and the electronic
self-energy discussing the effects produced by the screening and by the charge density profile near the surface.
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I. INTRODUCTION

Most spectroscopic investigations(photoemission, elec-
tron energy loss, absorption, Auger decay) involve electronic
excited states. The single particle picture assumes that pho-
toemission spectra measure the bands and the density of the
occupied states of the system by energy conservation. But
the process is a far more complex many-body one, compris-
ing the interaction between the photoelectron and the re-
maining hole plus the electronic relaxation around it. Never-
theless much progress has been achieved by calculating the
spectral properties of the solid using the Kohn-Sham(KS)
equation of the density functional theory(DFT). In this ap-
proach one solves a single particle self-consistent equation in
which exchange correlation potentials are described by the
local density approximation(LDA ) or by the generalized
gradient approximation(GGA). The eigenvalues of the KS
equation are often interpreted as the excitation energies in-
volved in the spectroscopic measurements, though no Koop-
man theorem holds in the DFT. However, this assumption
may lead to severe errors. For example, it does not only
strongly underestimate the gaps of semiconductors, but it
also describes a Mott insulator like NiO as a metallic system.

To improve on such limitation of the DFT one could re-
sort to methods of many-body perturbation theory. In fact
they are able to account for the time dependent response of
the system to an external perturbation, and give access to
physical properties outside the realm of DFT, but needed for
a correct description of excited states, such as quasiparticles
and collective excitations.

The many-body problem was expressed by Hedin1 as a
formally exact closed set of five equations that relate the
single particle Green’s function, the self-energy, the polariza-
tion, the effective two-particle potential and the vertex func-
tion. TheGW approximation2,3 (GWA) neglects vertex cor-
rections and reduces Hedin’s system to four closed
equations. The results of DFT can be used to achieve an
efficient scheme of solution of theGW equations. In fact
Dyson’s equation for the exact Green function requires the
input of a reference one, which in the original Hedin’s for-
mulation is the Green function for the Hartree equation. A

great improvement is to use instead the Green function of the
KS equation, since it includes not only the Hartree potential
but also exchange and correlation effects to some local de-
gree of correctness. This minimizes the effort for self-
consistency in the evaluation of the density.

The GWA with the just mentioned input from DFT is a
strategy that has been successfully applied to several sys-
tems. It combines the efficiency of the KS equation, with the
use of the basic equations of many body theory, and it is able
to supply excitation energies, quasiparticle lifetimes, and
generalized dielectric functions. In this framework quasipar-
ticle energies of organic semiconductors have been computed
very recently.4 The GWA can also provide reliable ground-
state properties beyond the realm of applicability of current
GGA functionals. Recall that the surface effective potential
VXCszd with the correct image tail was achieved by Eguiluz
et al.,5 by solving the Sham-Schlüter equation in GWA, with
a slab geometry.

As already pointed out, the GWA-DFT scheme has al-
lowed for a realistic and accurate treatment of the excited
state properties of more and more complex systems of con-
densed matter physics.6 Such calculations are usually con-
fined in a finite region/supercell with periodic properties at
the boundaries.7 However, a single bulk impurity, solid sur-
faces, adsorbed molecules and clusters, interfaces as well as
the recently investigated nanocontacts are indeed infinite or
semi-infinite nonperiodic electronic systems. If their theoret-
ical description is performed within a supercell, artificial fea-
tures may occur: for example, spurious interactions, non-
physical oscillatory behaviors of the wave functions, and a
discrete spectrum in which it may be difficult to isolate lo-
calized electronic states and resolve resonant ones. For ex-
ample, in order to properly account for the underlying bulk
band structure, a DFT evaluation of the surface dielectric
function for a semi-infinite crystal, that avoids slab or super-
cell geometries, was recently proposed by Brodersen and
Schattke.8

In this paper we address the problem of the description of
an infinite nonperiodic system within a GWA framework. We
show here that the artificial reduction of an infinite volume to
a periodic one can be avoided with more transparent results.
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Our method applies to systems(such as surfaces or localized
impurities) that asymptotically in space identify with others
whose relevant correlators are well studied, such as bulk
crystal or vacuum. It relies on the assumption that, for any
relevant correlatorFs1,2d, there is afinite space regionUF

outside which Fs1,2d cannot be distinguished from its
asymptotic limitF`s1,2d, within the required accuracy. This
property is under control in the course of computation. It also
provides a powerful tool for checking the correctness of the
result, by verifying whether the correlatorF matches withF`

at the boundaries ofUF or not.
The virtue of this method is to replace the finite volume of

the cell or slab by a finite effective volumeUF with boundary
conditions that are intrinsic to the system. The property that
“asymptotic” regions actually determine an effective region
UF of finite volume for the computation is connected with
the principle of nearsightedness recently introduced by
Kohn.9,10 It states that the local electronic structure near a
point r , while requiring in principle the knowledge of the
density(or the effective potential) everywhere, is largely de-
termined by the potential nearr .

This strategy to deal with nonperiodic unbounded systems
is of course not restricted to the GWA, which is here de-
scribed in detail. Recent improvements, that include vertex
corrections arising from appropriate approximations of the
Bethe-Salpeter kernel, should also benefit from this method.6

In Sec. II we shall present the main points of the GWA to
set the stage for further developments. Section III outlines
the method. Two main ingredients are the embedding ap-
proach for the zeroth order Green function, which guarantees
that the properties of the infinite nonperiodic system are
taken correctly into account, and a lemma for the inversion
of infinite matrices. The application to the semi-infinite jel-
lium is worked out in Sec. IV. Because of its generality, the
jellium surface is currently used as a bench mark system to
evaluate many-body features.11 This extension of the GWA
to the semi-infinite jellium can provide further data espe-
cially on how many-body properties affect the spectral ones
for a true continuum. In this respect we calculate the dielec-
tric function, the effective potential, the self-energy, and the
spectral weight function.12 Finally Sec. V is devoted to the
conclusions.

II. THE GW APPROXIMATION

We wish to carry out a many-body treatment of an infinite
non periodic system in the GWA. In this section we recall the
basic properties and the equations of the GWA. To be spe-
cific, we consider a system of electrons with Coulomb inter-
action vsr ,r 8d, in a static external potentialVextsr d that
couples to the densityn̂sr d, described by the Hamiltonian

Ĥ = o
i

1

2
p̂i

2 + o
i, j

vsr̂ i, r̂ jd +E drVextsr dn̂sr d. s1d

Atomic units (a0=0.529 Å, 1 Hartree=27.2 eV) are used
throughout this paper.

Since we are not interested in a spin-polarized phase, we
consider a ground state with equal occupations for spin. The

fermionic correlators are then proportional to the unit spin
matrix. Two-point correlators are time translation invariant
and will be considered in frequency space.

The GWA Refs. 2 and 3 is a self-consistent scheme that
originates from truncating the exact closed set of five He-
din’s equations for the five basic quantities: Green function
G, self-energyS, effective potentialW, polarizationP, and
vertex functionG. This simplification is achieved by neglect-
ing all vertex corrections.

The computational effort is reduced if one makes refer-
ence to the Green functionG0 that solves the Kohn-Sham
equation

Fv +
1

2
¹r

2 − VKSsr dGG0sr ,r 8,vd = dsr − r 8d, s2d

VKSsr d = VHsr d + Vextsr d + VXCsr d. s3d

The Hartree potentialVHsr d=edr 8vsr ,r 8dnsr 8d and the
exchange-correlation potentialVXCsr d contain the unknown
density of the interacting system, which is to be found self-
consistently by the relationnsr d=−2i edvG0sr ,r ,vdeivh,
whereh→0+. Once the reference Green functionG0 is com-
puted by Eq.(2), in the GWA one usually proceeds by evalu-
ating first the(ring) diagram for the polarization as

P0sr 1,r 2,vd = − 2iE
−`

+` dv8

2p
eiv8hG0sr 1,r 2,v

+ v8dG0sr 2,r 1,v8d. s4d

The effective potential is next obtained by solving the fol-
lowing Dyson’s equation:

W0sr 1,r 2,vd = vsr 1,r 2d

+E dr 3E dr 4vsr 1,r 3dP0sr 3,r 4,vdW0sr 4,r 2,vd.

s5d

The exchange correlation self-energy(we drop the subscript
0 for sake of simplicity) is given by

SXCsr 1,r 2,vd = iE
−`

+` dv8

2p
eiv8hG0sr 1,r 2,v

+ v8dW0sr 2,r 1,v8d. s6d

Finally we write down the Dyson equation forG1:

G1sr 1,r 2,vd = G0sr 1,r 2,vd +E dr 3E dr 4G0sr 1,r 3,vd

3 fSXCsr 3,r 4,vd − VXCsr 3ddsr 3

− r 4dgG1sr 4,r 2,vd. s7d

In principle, one should iterate the cycle from Eq.(4) to Eq.
(7) for self-consistency, by insertingG1 in Eq. (4). Experi-
ence with the homogeneous electron gas(HEG) has shown
that spectral properties are better reproduced by a first-
iteration calculation rather than by a self-consistent one.13
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III. THE METHOD

In this section we present a method to evaluate the basic
many body correlators for an infinite nonperiodic system in
the KS+GWA scheme, outlined in the previous section. For
periodic systems, the calculations can be restricted to a finite
volume (e.g., the unit cell of a lattice crystal) with suitable
boundary conditions. The present method implements the
same procedure for infinite systems without such a periodic-
ity in a viable way. A weaker hypothesis is used: along the
directions of broken symmetry any correlatorF can be ap-
proximated by the knownF` except for a finite length.
Hence the calculation is carried on only in a finite volume,
with boundary conditions determined by the “asymptotic
properties of the system,” i.e., byF`. A direct space repre-
sentation will be privileged in the directions where periodic-
ity is absent.

In developing the method, we need two technical tools,
which are provided in the Appendixes. The first in Appendix
A is the proof of a very useful lemma for the inversion of
infinite matrices, which permits to solve the Dyson equations
for W0 andG1 in Eqs.(5) and(7), respectively. The second in
Appendix B is the standard analytic continuation in the com-
plex plane of frequency integrals.

A. The embedding method

To start, the Green functionG0 of the KS Eq. (2) is
needed. For an infinite non periodic system, we have to re-
sort to a method which retains the advantages of the KS
approach without introducing any fictitious boundary condi-
tions. The Green function embedding approach14–16 fulfils
those conditions. Such a tool has been applied successfully
to the study of infinite systems without 3D periodicity, such
as bulk impurities, surfaces and adsorbates.7 Its great advan-
tage compared to the slab and the supercell techniques is to
provide a truly continuous density of states and the correct
asymptotic behavior of all physical quantities.

In the embedding method, which is here briefly sketched,
space divides into a finite regionV and one(or many) region
V8 where, to the required accuracy, the asymptotic regime is
valid. The KS equation(2) in VøV8 is rewritten as an equa-
tion for the finite regionV only. The effect ofV8 appears as
a surface term that adds to the KS potential. The modified
KS equation, forr and r 8 in V reads

fv − HKSsr dgG0sr ,r 8,vd −E
S

d2r 9USsr ,r 9,vdG0sr 9,r 8,vd

= dsr − r 8d, s8d

where S is the boundary ofV. The kernelUSsr ,r 8 ,vd is
nonzero only forr ,r 8PS, and it is constructed from the
Green function of the KS equation in the asymptotic region
V8, with Neumann boundary conditions onS.

We emphasize that the embedding method is formally ex-
act and thatG0 exhibits the truly continuous spectrum of the
system. Being the solution of Eq.(8), G0 is known only forr
and r 8 both in V. When the value ofG0 for one or both
arguments outsideV is required, it can be obtained with the
“matching Green function” method.17

B. The polarization

To compute the polarizationP0 in Eq. (4) numerically, we
can take advantage of the known functionP0

`, that corre-
sponds to the asymptotic limit ofP0 continued into the re-
gion of interest, and it is evaluated by means of the KS
solutionG0

`. If we setG0=G0
`+DG0, the ring integral yields

P0
` and better converging corrections, owing to the rapid de-

cay ofDG0=G0−G0
` as uv u →`. Because of the nonanalytic

behavior of the Green function close to the real axis, it is
convenient to compute the polarization with the change of
contour described in Appendix B. Since the spatial depen-
dence is not involved in the computation of the polarization,
such dependence amounts to that ofG0 in the same region.

C. The effective potential

The effective(dressed) potential, solution of the Dyson
equation(5) physically involves«−1, the functional inverse
of the nonlocal dielectric function«, and it is formally given
by the integral

W0sr 1,r 2,vd =E dr 3«−1sr 1,r 3,vdvsr 3,r 2d, s9d

where

«sr 1,r 2,vd = dsr 1 − r 2d −E dr 3vsr 1,r 3dP0sr 3,r 2,vd.

s10d

The decay properties of the polarizationP0 as ur 1−r 2u →`
imply that Eq.(10) can be evaluated numerically by intro-
ducing cutoffs for the integration variabler 3. The inverse
dielectric function is formally defined by

E dr 3 «sr 1,r 3,vd«−1sr 3,r 2,vd = dsr 1 − r 2d. s11d

The inversion of the matrix« on an unbounded region is not
a feasible numerical calculation. However, we only need
evaluate «−1 in a finite region U« outside which the
asymptotic regime holds. Since in ordinary systems the ef-
fective interaction between electrons far apart decays to zero
as the distance increases, Eq.(9) implies that also«−1sr 1,r 2d
goes to zero asur 1−r 2u →`. So we can use the Lemma
proven in the Appendix A and restrict the integration in Eq.
(11) to a finite regionV«,U«,V«, still obtaining correct val-
ues of «−1sr 1,r 2d for r 1,r 2PU«. An expansion over a dis-
crete basis set is now possible, leading the problem to an
ordinary matrix inversion. The size of the regionV« is a
numerical parameter, and convergence in the resulting«−1

must be checked. With this purpose, a localized basis set is
more convenient.

The effective potential can now be evaluated from Eq.(9).
We only remark that the frequency argumentv is fixed, so
W0 is computed just for the same frequency values as those
for the polarization, i.e.,v purely imaginary as discussed in
Appendix B. The size of the minimalV« depends on the
frequency. However, beingv imaginary, the region chosen
for v=0 can be safely used for all other frequencies. Finally
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we note that the assertion that«−1sr 1,r 2d→0 as ur 1−r 2u
→` before«−1 is actually evaluated does not pose concep-
tual difficulties: the decay to zero has in fact to be checked
for the known functions«`d−1.

D. The self-energy

It is customary to split the self-energy into the sum of the
exchangeSX = iGv and the correlation termSC= iGsW−vd.
The evaluation of the exchange term poses no problem: the
frequency integration sums over the occupied KS states, and
can be performed analytically if the spectrum is discrete. In
unbounded systems, the spectrum is generally continuous
[G0 is the solution of Eq.(8)], and the sum is replaced by an
integral to be performed numerically. The change of contour,
described in Appendix B, proves useful, together with the
information that we shall be dealing with systems in which
there are no KS states below the bottom of the band.

The main contribution to the correlation term isSC
`.

Therefore, in the evaluation of the integral, one can use the
splitting G0=G0

`+DG0, to obtain a leading asymptotic term
plus a correction due to the inhomogeneity, as in Sec. III B
for the polarization.

E. The Green function

The Dyson equation forG1 [Eq. (7)] is formally the same
as the Dyson equation forW0 [Eq. (5)] onceG1, SXC−VXC
andG0 are identified withW0, P0, andv, respectively. There-
fore we define the functioneXCsr 1,r 2,vd, which is analogous
to the dielectric function

eXCsr 1,r 2,vd = dsr 1 − r 2d −E dr 3G0sr 1,r 3,vd

3 fSXCsr 3,r 2,vd − VXCsr 2ddsr 3 − r 2dg.

s12d

Even with the these strong analogies,eXC presents a strik-
ing difference with«: the decay ofeXC is linked to the one of
G0, which in turn varies according to the dimensionality of
the system. As a consequence,eXCsr ,r 8d may not go to zero
as ur −r 8u goes to infinity, thus not satisfying the hypothesis
of the lemma in Appendix A. To makeG0 decay asur −r 8 u
→` (which implies the same property foreXC), it is conve-
nient to solve Eq.(12) at a complex frequencyv+ iD. The
choice of the real quantityD depends on a compromise: if it
is too small, the decay ofG0 is very slow and a large region
of inversion ofeXC is needed; if it is too large, the structures
on the real frequency axis we are interested in are
broadened—in factD plays the role of resolution. The final
result of the calculation, the interacting Green function, is
thus evaluated on a translated frequency axisv+ iD. Analyti-
cal continuation improves the resolution: first, the values of
G are fitted with a rational function, then the expression is
continued to the real frequency axis.

IV. SEMI-INFINITE JELLIUM

A. Basics

In this section we illustrate the application of the method
to semi-infinite jellium.18 Semi-infinite jellium is a neutral

system of dynamical electrons in a background of uniform
positive charge densityn=1/s4prs

3/3d in the half-spacez
ø0. In the half-spacez.0 there is no positive charge. We
choose the value ofrs to give an electron density equal to
that of aluminiumsrs=2.07a0d. The exchange-correlation po-
tential in the KS equation is taken in the LDA.16

The system is invariant under translations parallel to the
surface. Hence the wave vector parallel to the surfacek i is a
good quantum number. It is important to observe that since
the solid is semi-infinite, the wave vectorkz may take any
real value. So we are able to deal with truly continuous den-
sities of states, also for a fixedk i. Owing to this property any
arbitrary small energy excitations are allowed by semi-
infinite jellium, which results in a correct description of the
response functions computed at the Fermi level.19 A jellium
slab calculation, which can only work out a discrete spec-
trum (i.e., a nonphysical quantized set ofkz wave vectors),
cannot deal with infinitesimal excitations.

The study of semi-infinite jellium is basically one-
dimensional and satisfies the requirements of applicability of
our method. The perturbation induced by the jellium edge is
localized near the surface. At a distance of fewrs inside the
solid, the properties of the system approach those of the in-
finite, homogeneous electron gas(HEG). Many-body results
for the HEG in theGWapproximation are well known in the
literature.13 If we indicate by Fn

HEGsk,vd the correlatorF
evaluated for a HEG of densityn, the bulk and vacuum lim-
its of F are

FB,V
` sz,z8,ki,vd =E dkz

2p
eikzsz−z8dFnB,nV

HEG sÎk i
2 + kz

2,vd.

s13d

Therefore we need evaluate a correlatorF only on a lim-
ited interval of thez axis UF=fzB,zVg. Care must be taken
whenF is evaluated atz andz8 in different regions of space,
e.g., z in bulk and z8 in vacuum. However, the important
propertyFsz,z8d→0 whenuz−z8 u →` guarantees that when
z is in bulk andz8 in vacuum the functionsFBsz,z8d and
FVsz,z8d are both zero to the desired accuracy, ifuzB−zVu is
large enough.

The dependence ofF on its four argumentssz,z8 ,ki ,vd is
in principle continuous. Numerically, we stored the informa-
tion aboutF on a four dimensional discrete mesh. Interme-
diate values, when necessary, are obtained with interpolation
algorithms. Forz and z8 meshes, natural limit values are
given byzB andzV. Cutoffs for ki andv can be fixed since
F→0 whenki→` or uv u →`. Different meshes have to be
chosen for different functions.

B. Results

We consider the polarizationP0 first. The parallel wave
vector convolution in Eq.(4) does not pose numerical diffi-
culties. Regarding the frequency convolution, the factoreiv8h

is necessary for the convergence of the integral. In fact the
Green functionG0svd approaches zero asuvu−1/2 as uv u →`,
as it can easily be verified for the HEG Green function. We
follow the treatment of Sec. III B, and writeG0=GHEG
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+DG. The leading term,GHEGGHEG, gives PHEG, the others
can be evaluated numerically, becauseDGsvd goes to zero as
uvu−3/2 when uv u →`.

The same procedure can be adopted in the calculation of
the correlation term of the self-energy, i.e.,SC= iGsW−vd.
However, the differenceW−v already decays fast enough to
ensure convergence.

Omitting the dependence onki andv, we rewrite Dyson’s
equation(9) for W0 as

W0sz1,z2d =E dz3 «−1sz1,z3dvsuz3 − z2ud,

where«−1 is defined by the inversion of« over the wholez
axis. Since the asymptotic value of«−1 are known from the
HEG, this function has to be evaluated on a finite interval
U«=fzB,zVg. We exploit the lemma in Appendix A and re-
strict the inversion to the finite intervalV«=fLB,LVg,
U«,V«. Correct values of«−1sz1,z2d for z1,z2PU« are ob-
tained if LB and LV are conveniently large. This concept is
graphically presented in Fig. 1, where we show«−1 for dif-
ferent values ofLB andLV. The negative peak forz1,z2=LB
(on the left of each plot) represents a spurious feature intro-
duced when the region of integration is restricted to a finite
interval. This behavior is located at the boundaries ofV«

regardless of its size, as«−1sz1,z2d is different from zero only
for values ofz2 close toz1. Hence the intervalV« has to be
only slightly larger thanU«. For the values described in Fig.
1, if zB=−15a0, the choiceLB=−20a0 is already an accurate
one. A similar discussion has to be done with respect toLV,
but in this case the spurious peak is much smaller.

We discuss the calculated effective potential by displaying
first the contour levels of the difference between the effective
and bare interactionW0−v in the z1,z2 plane in Fig. 2. This
is also a convenient test to check the convergence of the
inversion procedure of the dielectric function, in terms of the
resultingW0. The HEG levels(thinner lines) of W0−v are
also reported. The agreement is excellent whenz1 and z2

approach bulk. As we move into the vacuum,W0−v cor-
rectly goes to zero. Next we consider the effective potential
W0 in the more intuitive direct space representation
sr 1,r 2,vd obtained by anti-FT with respect tok i. For sim-
plicity, we limit our discussion to the static case(v=0) and
consider collinear points on the normal to the surface(r 1i

=r 2i). Figure 3 showsW0 as a function ofz from bulk to
vacuum:W0 is similar to a Yukawa screened potential forz1
andz2 in bulk, and it coincides with the bare Coulomb inter-
action forz1 andz2 in vacuum. Some intermediate values are
shown: forz1 fixed near the surface,W0 is no longer a sym-
metric function ofz2 with respect toz1, as the screening is
inhomogeneous.

In Fig. 4 we report the contour levels of the self-energy
evaluated atki=0 andv=m, m being the chemical potential.
A particular feature in the near-surface region is the “Ara-
bian” shape of the contours levels. This is an effect of the
inhomogeneous density at the metal surface: whenz1 andz2
lie outside jellium, the self-energy, asuz1−z2u increases, de-
creases in a slower way than in bulk owing to lower screen-
ing. This particular feature of the surface cannot be repro-
duced by models based on an average density, as the one
proposed in Ref. 20 and successfully tested for bulk materi-

FIG. 1. Values of«−1sz1,z2d−dsz1−z2d for different inverting
regionsV«=fLB,LVg. Here,rs=2.07a0, v=0, andki=0.2kF, kF be-
ing the Fermi wave vector.

FIG. 2. Contour levels ofW0sz1,z2,ki ,vd−vsuz1−z2u ,kid in the
z1,z2 plane. Thick curves: semi-infinite jellium. Thin curves: HEG
of equal density. Herers=2.07a0, v=0, andki=0.2kF.

FIG. 3. Effective and bare Coulomb interaction near the jellium
surface for points aligned on the normal. Herev=0. rs=2.07a0.

MANY-BODY METHOD FOR INFINITE ... PHYSICAL REVIEW B69, 245113(2004)

245113-5



als (see the inset in Fig. 4). Since the origin of this phenom-
enon is the inhomogeneity of the surface density and not the
continuous spectrum description, a thick enough slab should
reproduce the same density and hence the same findings.

The spectral properties of the system are the final goal of
this method. They can be accessed from the many-body
spectral weight function

Asz,k i,vd = −
1

p
Im Gsz,z,k i,vdsgnsv − md. s14d

As discussed in Sec. III E, to solve Dyson’s Eq.(7) for the
Green functionG, one identifies the kernel ofeXC of Eq. (12)
with « and adds an imaginary partiD to the frequency to
make eXC

−1 sz1,z2d decay to zero asuz1−z2u goes to infinity,
thus satisfying the hypothesis of the lemma in Appendix A.
Then the same procedure as just shown for the effective po-
tential follows. We experienced that an intervalVe about
100a0 wide was needed for a value ofD of about 0.05 Har-
tree, in order to describe the surface region correctly.

The spectral weight function in Eq.(14) provides an esti-
mate of the quasiparticle amplitude and is directly related to
a variety of experiments such as photoemission
spectroscopies,21 and scanning tunneling microscopy.22 The
integral ink i gives the local density of states(LDOS)

ssz,vd =E d2k i

s2pd2Asz,k i,vd. s15d

The evaluation of the LDOS of semi-infinite jellium in
this framework demonstrates the presence at the surface of a
broad image-potential induced(IPI) resonance, which
emerges sharply when results are compared to DFT-LDA
ones. We stress that an IPI resonance width can only be
obtained by a many-body approach like ours which takes
into account the semi-infinite character of the solid. We refer
to Ref. 12 for the results and a detailed discussion on this
topic.

V. CONCLUSIONS

We have presented a method to investigate infinite non-
periodic systems in the framework of the GWA. Calculations
can be performed in finite regions, without introducing non-
physical boundary conditions, such as confining barriers(the
slab approach) or a 3D fictitious periodicity(the supercell
one). In such systems(e.g., a solid with a surface) densities
of states are continuous, and while really discrete states may
exist inside gaps, other ones become resonances when they
do overlap in energy with a continuum band. The proposed
method is particularly suitable for the description of these
systems. In fact on the one side the embedding approach,
which allows for calculating a truly continuous density of
states, includes automatically the hybridization between bulk
and surface states. On the other many-body effects, whose
treatment is needed for excited states or image potential
ones, are accounted for at the GWA level.

On the contrary a DFT slab calculation of such systems
(e.g., in the LDA or GGA) is only able to work out a spectral
weight constituted by delta functions, one for each discrete
eigenstate, while the real structure of the spectrum may be in
general more complicate as just outlined. The GWA correc-
tion cannot amend by itself this result, but only determine a
broadening of quasiparticle states(plus eventually minor ad-
ditional structures) due to many-body correlations. This
broadening, which can be evaluated in first approximation by
taking the average value of the self-energy over the DFT
state, may be much smaller than that due to hybridization
effects, as it is the case for IPI resonances.

In this paper we have also extensively investigated semi-
infinite jellium by our approach. We have illustrated the
bulk-to-vacuum transition of the many-body electron gas
properties. By comparing the LDA and GWA density of
states, this method has been able to identify an image poten-
tial surface resonance of large width.12 Extension of this ap-
proach to semi-infinite realistic surfaces23 could bring a
wealth of accurate data on the spectral properties of surfaces
and adsorbates, especially regarding the excited states.
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APPENDIX A: INVERSION OF INFINITE MATRICES

Consider the equations defining the inverse of a matrixA
on two different volumesV andV, with V,V:

E
V

dr 3Asr 1,r 3dAV
−1sr 3,r 2d = dsr 1,r 2d, r 1,r 2 P V,

sA1d

E
V

dr 3Asr 1,r 3dAV
−1sr 3,r 2d = dsr 1,r 2d, r 1,r 2 P V.

sA2d

In generalAV
−1 is different from the restriction ofAV

−1 in V.
However, the following lemma gives a condition for the two

FIG. 4. Self-energySXCsz1,z2,ki ,vd for rs=2.07a0, ki=0, and
v=m. Inset: model in Ref. 20.
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matrices to coincide on a smaller subsetU,V,V.
Lemma. If AV

−1sr 1,r 2d=0 for all r 1PV−V and r 2PU,
thenAV

−1sr 1,r 2d=AV
−1sr 1,r 2d for all r 1,r 2PU.

Proof.consider Eq.(A1) for r 1PV andr 2PU, multiply it
by AV

−1sr 4,r 1d and integrate inr 1 over V:

E
V

dr 1AV
−1sr 4,r 1dE

V

dr 3Asr 1,r 3dAV
−1sr 3,r 2d = AV

−1sr 4,r 2d.

The integral inr 3 overV is split into an integral onV and on
V−V. The first integral yieldsAV

−1sr 4,r 2d, the latter vanishes
becauseAV

−1sr 1,r 2d=0 for r 1PV−V and r 2PU.
As a consequence of the lemma, if we are interested in the

values ofAV
−1 in a subsetU of the possibly infinite volumeV,

it is sufficient to invertA on a suitablelarger subsetV, with
V,V. Quite generally, the functions of interest have the
propertyAV

−1sr 1,r 2d→0 as ur 1−r 2u →`. Therefore, the hy-
pothesis of the lemma can be regarded as true to any degree
of accuracy, for a large enough setV.

APPENDIX B: ANALYTIC CONTINUATION
OF FREQUENCY INTEGRALS

The presence of nonanalyticities close to the contour of
frequency integration renders it difficult to integrate expres-
sions containing the Green functionG and the effective po-
tentialW numerically, as for the polarization[Eq. (4)] or the
self-energy[Eq. (6)]. Consider the integral in Eq.(4) first.
The Green function has poles(or cuts) just below the realv
axis for v.m and above forv,m. Therefore, ifz is a pole
or a point in the cut, sgnsm−Rezd=sgnsIm zd. Note that the

factor eiv8h means that only the residues related to occupied
states(v,m) are summed. To avoid the numerical difficulty,
one can define the analytic continuation ofP to complex
frequencies as the sum over the same residues, now evalu-
ated at the complex frequency.24 It is easy to show that in the
case of purely imaginary frequencies this corresponds to ro-
tate the integration contour to the complex frequency axis
m+ iu8 (u,u8 real). In the GWA the continued polarization is

P0siud = − 2iE
m−i`

m+i`

dv8G0sv8 + iudG0sv8d. sB1d

On the same footing, also the self-energy[Eq. (6)] can be
continued to complex frequencies. Ifv=m+ iu, the following
relation holds:

S0sm + iud = iE
−i`

i`

dv8G0sv8 + m + iudW0sv8d, sB2d

where the analytic continuation ofW0sv8= iu8d is evaluated
by insertingP0siud into Dyson’s equation. Note that the Le-
hmann representation ofP0 implies that a polez of W0 has
sgnsIm zd=−sgnsRe zd.

The self-energy resulting from Eq.(B2) will be known on
the complex linev=m+ iu. This is useful for the evaluation
of integral properties(e.g., the total energy), but for spectral
properties the Green function(and hence the self-energy) has
to be evaluated at real frequencies. To this end, one can fit
SXC on the complex axis with a simple analytic expression,
to be continued to the real axis.25 The multipole one is per-
haps the more common:

SXCsvd = a0 + o
j=1

N
bj

v − cj
. sB3d

A small number of poles(N=2,4) normally provides a
good fit.

To rotate the integration path in frequency space we recall
the following useful result. Consider the two integrals, where
v, a, andb are real:

F1svd =E
−`

+`

dv8
1

sv8 − z1dsv + v8 − z2d

=ip
sgnsImz1d − sgnsImz2d

v − z2 + z1
, sB4d

F2svd =E
a−i`

a+i`

dv8
1

sv8 − z1dsb + iv + v8 − z2d

=ip
sgnsa − Rez1d − sgnsa + b − Rez2d

b + iv − z2 + z1
. sB5d

The two numerators are equal if sgnsImz1d=sgnsa−Rez1d
and sgnsImz2d=sgnsa+b−Rez2d. In this case:F2svd=F1sb
+ ivd, i.e., F2 is the analytic continuation ofF1 to complex
frequenciesb+ iv. Notice that, to be analytic, the continua-
tion has to be performedafter the integration. If bothz1 and
z2 are poles of the time-ordered Green function[as for the
polarization in Eq.(4)], it follows from the Lehmann repre-
sentation that the condition is met fora=m andb=0. If z1 is
a pole of the effective interaction andz2 is a pole of the
time-ordered Green function[as for the self-energy in Eq.
(6)], the condition is met fora=0, b=m.
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