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Many-body method for infinite nonperiodic systems
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A method to implement the many-body Green function formalism in &W approximation for infinite
nonperiodic systems is presented. It is suitable to treat systems of known “asymptotic” properties which enter
as boundary conditions, while the effects of the lower symmetry are restricted to regions of finite volume. For
example, it can be applied to surfaces or localized impurities. We illustrate the method with a study of the
surface of semi-infinite jellium. We report the dielectric function, the effective potential, and the electronic
self-energy discussing the effects produced by the screening and by the charge density profile near the surface.
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I. INTRODUCTION great improvement is to use instead the Green function of the
Most spectroscopic investigatiorghotoemission, elec- KS equation, since it includes not only the Hartree potential
tron energy loss, absorption, Auger depayolve electronic but also exchange and cqrrelz;tl_on_ effects to some local de-
excited states. The single particle picture assumes that ph@/€€_Of correctness. This minimizes the effort for self-
toemission spectra measure the bands and the density of tH@NSistency in the evaluation of the density. .
occupied states of the system by energy conservation. But 1N€ GWA with the just mentioned input from DFT is a

the process is a far more complex many-body one, COmpriss_trategy that has been successfully applied to several sys-

ing the interaction between the photoelectron and the ret_ems.flthcogbi!’les the pﬁiciePcy of tge dKShequationav_viFh tr;;

o : . : ‘use of the basic equations of many body theory, and it is able
maining hole plus the electronic relaxz?mon around it. N_everto supply excitation energies, quasiparticle lifetimes, and
theless much progress has been achieved by calculating tI&

spectral properties of the solid using the Kohn-Shas) Bneralized dielectric functions. In this framework quasipar-

: . . ) ticle energies of organic semiconductors have been computed
equation of the density functional theofFT). In this ap-  \ery recently® The GWA can also provide reliable ground-

proach one solves a single particle self-consistent equation iate properties beyond the realm of applicability of current
which exchange correlation potentials are described by thgGA functionals. Recall that the surface effective potential
local density approximatioiLDA) or by the generalized v, (z) with the correct image tail was achieved by Eguiluz
gradient approximatioGGA). The eigenvalues of the KS et al 5 by solving the Sham-Schliiter equation in GWA, with
equation are often interpreted as the excitation energies ing slab geometry.
volved in the spectroscopic measurements, though no Koop- As already pointed out, the GWA-DFT scheme has al-
man theorem holds in the DFT. However, this assumptionowed for a realistic and accurate treatment of the excited
may lead to severe errors. For example, it does not onlgtate properties of more and more complex systems of con-
strongly underestimate the gaps of semiconductors, but densed matter physiésSuch calculations are usually con-
also describes a Mott insulator like NiO as a metallic systemfined in a finite region/supercell with periodic properties at
To improve on such limitation of the DFT one could re- the boundarie$.However, a single bulk impurity, solid sur-
sort to methods of many-body perturbation theory. In factfaces, adsorbed molecules and clusters, interfaces as well as
they are able to account for the time dependent response tfie recently investigated nanocontacts are indeed infinite or
the system to an external perturbation, and give access temi-infinite nonperiodic electronic systems. If their theoret-
physical properties outside the realm of DFT, but needed foical description is performed within a supercell, artificial fea-
a correct description of excited states, such as quasiparticlésres may occur: for example, spurious interactions, non-
and collective excitations. physical oscillatory behaviors of the wave functions, and a
The many-body problem was expressed by Hedis a  discrete spectrum in which it may be difficult to isolate lo-
formally exact closed set of five equations that relate thecalized electronic states and resolve resonant ones. For ex-
single particle Green’s function, the self-energy, the polarizaample, in order to properly account for the underlying bulk
tion, the effective two-particle potential and the vertex func-band structure, a DFT evaluation of the surface dielectric
tion. The GW approximatiod® (GWA) neglects vertex cor- function for a semi-infinite crystal, that avoids slab or super-
rections and reduces Hedin's system to four closedell geometries, was recently proposed by Brodersen and
equations. The results of DFT can be used to achieve a8chattké
efficient scheme of solution of th&W equations. In fact In this paper we address the problem of the description of
Dyson’s equation for the exact Green function requires then infinite nonperiodic system within a GWA framework. We
input of a reference one, which in the original Hedin’s for- show here that the artificial reduction of an infinite volume to
mulation is the Green function for the Hartree equation. Aa periodic one can be avoided with more transparent results.
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Our method applies to systergich as surfaces or localized fermionic correlators are then proportional to the unit spin
impuritiey that asymptotically in space identify with others matrix. Two-point correlators are time translation invariant
whose relevant correlators are well studied, such as bulnd will be considered in frequency space.
crystal or vacuum. It relies on the assumption that, for any The GWA Refs. 2 and 3 is a self-consistent scheme that
relevant correlatoF(1,2), there is &finite space regiolJz  originates from truncating the exact closed set of five He-
outside which F(1,2) cannot be distinguished from its din's equations for the five basic quantities: Green function
asymptotic limitF=(1,2), within the required accuracy. This G, self-energy2, effective potentiaW, polarizationP, and
property is under control in the course of computation. It alsovertex functionl. This simplification is achieved by neglect-
provides a powerful tool for checking the correctness of théng all vertex corrections.
result, by verifying whether the correlatermatches with* The computational effort is reduced if one makes refer-
at the boundaries df or not. ence to the Green functio@, that solves the Kohn-Sham
The virtue of this method is to replace the finite volume ofequation
the cell or slab by a finite effective volumd: with boundary 1
condmons_ that are intrinsic to the system. The property f[hat {w +2V2- VKS(F)}GO(I‘,I",w) =8 -r'), 2)
“asymptotic” regions actually determine an effective region 2
Ug of finite volume for the computation is connected with
the principle of nearsightedness recently introduced by Vis(r) = Vi (r) + V(1) + Vye(r). 3)
Kohn?10 |t states that the local electronic structure near a _
point r, while requiring in principle the knowledge of the The Hartree potentialVy(r)=fdr'v(r,r')n(r’) and the
density(or the effective potentigleverywhere, is largely de- €Xxchange-correlation potentisfc(r) contain the unknown
termined by the potential near density of the interacting system, which is to be found self-
This strategy to deal with nonperiodic unbounded systemsonsistently by the relatiom(r)=-2i [ dwGq(r ,r, w)e*7,
is of course not restricted to the GWA, which is here de-wherez— 0*. Once the reference Green functiGg is com-
scribed in detail. Recent improvements, that include vertexuted by Eq(2), in the GWA one usually proceeds by evalu-
corrections arising from appropriate approximations of theating first the(ring) diagram for the polarization as
Bethe-Salpeter kernel, should also benefit from this method. -
In Sec. Il we shall present the main points pf the GWAto Po(F 1T @) = — ZiJ do 1" 1Gy(F 1, 5y 0
set the stage for further developments. Section Il outlines o
the method. Two main ingredients are the embedding ap- , .
proach for the zeroth order Green function, which guarantees + @')Go(r My, 0'). (4)
that the properties of the infinite nonperiodic system arerne effective potential is next obtained by solving the fol-
taken correctly into account, and a lemma for the inversiong,ing Dyson’s equation:
of infinite matrices. The application to the semi-infinite jel-
lium is worked out in Sec. IV. Because of its generality, theWg(r,r,, o) =v(rq,ry)
jellium surface is currently used as a bench mark system to

evaluate many-body featur&sThis extension of the GWA +fdr3f dr (1 1,7 3)Po(T 3, 2, @) Wo(T 4, 2, ).
to the semi-infinite jellium can provide further data espe-
cially on how many-body properties affect the spectral ones (5)

for a true continuum. In this respect we calculate the dielec-
tric function, the effective potential, the self-energy, and theThe exchange correlation self-energye drop the subscript
spectral weight functio®? Finally Sec. V is devoted to the O for sake of simplicity is given by
conclusions. ** de’
Exc(rl,rz,w)=if o 9" 1G(r 1, g0
Il. THE GW APPROXIMATION -

+ @ )Wy(ror,0'). 6
We wish to carry out a many-body treatment of an infinite 0ol ;') ©

non periodic system in the GWA. In this section we recall theFinally we write down the Dyson equation f@;:
basic properties and the equations of the GWA. To be spe-
cific, we consider a system of electrons with Coulomb inter-
action v(r,r’), in a static external potentiaV(r) that
couples to the densitii(r), described by the Hamiltonian

Gl(rlarzaw):Go(rl,rzaw)‘*JdrsJdr4Go(f1,f3.w)

X [2xc(r3,r4,0) = Vyc(ra) ara

- 1. L R B

H:E Epiz+20(ri,rj)+JdrVext(r)n(r), (1) r)]Ga(rar ). (7)

' = In principle, one should iterate the cycle from E4) to Eq.

Atomic units (a,=0.529 A, 1 Hartree=27.2 eVare used (7) for self-consistency, by inserting, in Eq. (4). Experi-

throughout this paper. ence with the homogeneous electron ¢d&G) has shown
Since we are not interested in a spin-polarized phase, wihat spectral properties are better reproduced by a first-

consider a ground state with equal occupations for spin. Thigeration calculation rather than by a self-consistent Bne.
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Ill. THE METHOD B. The polarization

In this section we present a method to evaluate the basic To compute the polarizatioR, in Eq. (4) numerically, we
many body correlators for an infinite nonperiodic system incan take advantage of the known functi®g, that corre-
the KS+GWA scheme, outlined in the previous section. Foisponds to the asymptotic limit d?, continued into the re-
periodic systems, the calculations can be restricted to a finitgion of interest, and it is evaluated by means of the KS
volume (e.g., the unit cell of a lattice crysjawith suitable  solutionGg. If we setGy=G, +AG,, the ring integral yields
boundary conditions. The present method implements th&, and better converging corrections, owing to the rapid de-
same procedure for infinite systems without such a periodiccay of AGo=G,~ Gy as|w| — . Because of the nonanalytic
ity in a viable way. A weaker hypothesis is used: along thebehavior of the Green function close to the real axis, it is
directions of broken symmetry any correlatércan be ap- convenient to compute the polarization with the change of
proximated by the knowrF* except for a finite length. contour described in Appendix B. Since the spatial depen-
Hence the calculation is carried on only in a finite volume,dence is not involved in the computation of the polarization,
with boundary conditions determined by the “asymptoticsuch dependence amounts to thaGgfin the same region.
properties of the system,” i.e., dy”. A direct space repre-
sentation will be privileged in the directions where periodic- C. The effective potential

ity is absent. ] ) )
In developing the method, we need two technical tools, The effective(dressedl potential, solution of the Dyson

which are provided in the Appendixes. The first in Appendix@duation(5) physically involvese™, the functional inverse
A is the proof of a very useful lemma for the inversion of Of the nonlocal dielectric function, and it is formally given
infinite matrices, which permits to solve the Dyson equationdy the integral

for Wy andG; in Eqgs.(5) and(7), respectively. The second in

Appendix B is the standard analytic continuation in the com- Wy(r 1,1 2, @) =f drageX(ry,ra,0)u(rs,ry), (9)
plex plane of frequency integrals.

where
A. The embedding method
To start, the Green functios, of the KS Eg.(2) is a(rl,rz,w):cs(rl—rz)—Jdr3v(r1,r3)P0(r3,r2,w).
needed. For an infinite non periodic system, we have to re-
sort to a method which retains the advantages of the KS (10

approach without introducing any fictitious boundary condi- . o
tions. The Green function embedding apprdack fulfils The decay properties of the polarizatiél as |ry—r| —

those conditions. Such a tool has been applied successfulgﬁp!y that Eq.(10) can _be eva!uated pumerlcally_by Intro-
to the study of infinite systems without 3D periodicity, such ucing _cutoffs_for_the Integration variablg. The inverse

as bulk impurities, surfaces and adsorbdths.great advan- dielectric function is formally defined by

tage compared to the slab and the supercell techniques is to

provide a truly continuous density of states and the correct J drg e(rrgee ™ (raruw) =or -ry).  (11)
asymptotic behavior of all physical quantities.

In the embedding method, which is here briefly sketchedThe inversion of the matrix on an unbounded region is not
space divides into a finite regidhand onglor many region  a feasible numerical calculation. However, we only need
V' where, to the required accuracy, the asymptotic regime igvaluate £ in a finite region U, outside which the
valid. The KS equatioi2) in VU V' is rewritten as an equa- asymptotic regime holds. Since in ordinary systems the ef-
tion for the finite regionV only. The effect ofV’ appears as fective interaction between electrons far apart decays to zero
a surface term that adds to the KS potential. The modifiecs the distance increases, E®). implies that alsa:™(r,r,)

KS equation, for andr’ in V reads goes to zero agr,—r,| —». So we can use the Lemma
proven in the Appendix A and restrict the integration in Eq.
[ = Hys(r)]Gy(r,r', o) _f dPrUg(r,r", w)Gy(r",r’, w) (11) to a finite regionv,,U, CV,, still obtaining correct val-
s ues ofe™(rq,r,) for ry,r, e U,. An expansion over a dis-
=5r-r"), ®) crete basis set is now possible, leading the problem to an

ordinary matrix inversion. The size of the regidf is a
where S is the boundary ofV. The kernelU4r,r’,w) is  numerical parameter, and convergence in the resukiig
nonzero only forr,r’ €S, and it is constructed from the must be checked. With this purpose, a localized basis set is
Green function of the KS equation in the asymptotic regionmore convenient.

V’, with Neumann boundary conditions & The effective potential can now be evaluated from @9}

We emphasize that the embedding method is formally exWe only remark that the frequency argumenis fixed, so
act and thats, exhibits the truly continuous spectrum of the Wy is computed just for the same frequency values as those
system. Being the solution of E(B), G, is known only forr for the polarization, i.e.w purely imaginary as discussed in
andr’ both in V. When the value ofG, for one or both Appendix B. The size of the minimaV, depends on the
arguments outsid¥ is required, it can be obtained with the frequency. However, being imaginary, the region chosen
“matching Green function” method. for =0 can be safely used for all other frequencies. Finally
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we note that the assertion that'(r,,r,) —0 as|r,—r,| system of dynamical electrons in a background of uniform
— o beforee™! is actually evaluated does not pose concep-ositive charge densitp=1/(4xr3/3) in the half-spacez
tual difficulties: the decay to zero has in fact to be checked<0. In the half-space>0 there is no positive charge. We
for the known functions*) ™. choose the value aof to give an electron density equal to
that of aluminium(rg=2.07ay). The exchange-correlation po-
tential in the KS equation is taken in the LOA.

It is customary to split the self-energy into the sum of the The system is invariant under translations parallel to the
exchange®y=iGv and the correlation tery-=iG(W-v). surface. Hence the wave vector parallel to the surkads a
The evaluation of the exchange term poses no problem: thgood quantum number. It is important to observe that since
frequency integration sums over the occupied KS states, aritie solid is semi-infinite, the wave vecty may take any
can be performed analytically if the spectrum is discrete. Irreal value. So we are able to deal with truly continuous den-
unbounded systems, the spectrum is generally continuowgities of states, also for a fixég. Owing to this property any
[Gy is the solution of Eq(8)], and the sum is replaced by an arbitrary small energy excitations are allowed by semi-
integral to be performed numerically. The change of contourinfinite jellium, which results in a correct description of the
described in Appendix B, proves useful, together with theresponse functions computed at the Fermi Ié%@l.jellium
information that we shall be dealing with systems in whichslab calculation, which can only work out a discrete spec-
there are no KS states below the bottom of the band. trum (i.e., a nonphysical quantized set lof wave vectors

The main contribution to the correlation term K.  cannot deal with infinitesimal excitations.

Therefore, in the evaluation of the integral, one can use the The study of semi-infinite jellium is basically one-
splitting Go=Gg +AGy, to obtain a leading asymptotic term dimensional and satisfies the requirements of applicability of
plus a correction due to the inhomogeneity, as in Sec. Il Bour method. The perturbation induced by the jellium edge is

D. The self-energy

for the polarization. localized near the surface. At a distance of fevinside the
. solid, the properties of the system approach those of the in-
E. The Green function finite, homogeneous electron gd&$EG). Many-body results

as the Dyson equation fak [Eq. (5)] onceGy, Syo—Vye  literature® If we indicate by F=(k,w) the correlatorF
andG, are identified withWy, Po, andv, respectively. There- €valuated for a HEG of density, the bulk and vacuum lim-
fore we define the functiosyc(r 4,1, w), which is analogous  its of F are

to the dielectric function

dk, . , >
F;V(Z,Z’,ku,w) = J 2—;e'kz(z_z )F,';':,?V(\s’kf + kg,w).
exc(r,r0) =3(r —ry) ‘f dr3Go(ry,r3, )
(13
X [Exc(ra,r o) = Vxc(ra)drg—ry)]. Therefore we need evaluate a correldoonly on a lim-

(12) ited interval of thez axis Ur=[z5,2,]. Care must be taken
whenF is evaluated ar andZz’ in different regions of space,
e.g.,z in bulk andZz in vacuum. However, the important
propertyF(z,z') — 0 when|z-2'| —« guarantees that when
z is in bulk andz’ in vacuum the function$-g(z,z') and
Fv(z,Z') are both zero to the desired accuracylzif-z,| is
large enough.
The dependence &f on its four argument&z, 7'k, ) is

in principle continuous. Numerically, we stored the informa-
tion aboutF on a four dimensional discrete mesh. Interme-
diate values, when necessary, are obtained with interpolation
algorithms. Forz and zZ meshes, natural limit values are

iven by zz andz,. Cutoffs fork; and w can be fixed since

— 0 whenk;— o or |w| — . Different meshes have to be
chosen for different functions.

Even with the these strong analogiegs presents a strik-
ing difference withe: the decay ok is linked to the one of
Gg, which in turn varies according to the dimensionality of
the system. As a consequenege(r,r’) may not go to zero
as|r—r’| goes to infinity, thus not satisfying the hypothesis
of the lemma in Appendix A. To mak&, decay agr—r’|
— oo (which implies the same property fec), it is conve-
nient to solve Eq(12) at a complex frequencyw+iA. The
choice of the real quantitk depends on a compromise: if it
is too small, the decay dg, is very slow and a large region
of inversion ofeyc is needed; if it is too large, the structures
on the real frequency axis we are interested in ar
broadened—in facA plays the role of resolution. The final
result of the calculation, the interacting Green function, is
thus evaluated on a translated frequency axtsA. Analyti-

cal continuation improves the resolution: first, the values of B. Results
G are fitted with a rational function, then the expression is \ve consider the polarizatioR, first. The parallel wave
continued to the real frequency axis. vector convolution in Eq(4) does not pose numerical diffi-
IV. SEMI-INFINITE JELLIUM culties. Regarding the frequency convolution, the faetor”
_ is necessary for the convergence of the integral. In fact the
A. Basics Green functionGy(w) approaches zero 4s| Y2 as|w| — o,

In this section we illustrate the application of the methodas it can easily be verified for the HEG Green function. We
to semi-infinite jellium!® Semi-infinite jellium is a neutral follow the treatment of Sec. Il B, and writ&,=G"EC
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¢! (21, 2)-8 (229

[-20,+10]

[-15,+7.5]

[-10,+5]

Distance from the surface z, (ap)

20 -10 22 (ap) Distance from the surface z; (a¢)

5 20 FIG. 2. Contour levels 0fVy(zy,2,,k, w)—v(]z1 -2 ,k)) in the

| 1 ) ) ) 71,2, plane. Thick curves: semi-infinite jellium. Thin curves: HEG
l_:IG. 1._Va ues ofe (21,32)—5(21—23) for dn‘fe_rent inverting equal density. Here,=2.07ag, »=0, andk,=0.2.

regionsV,=[Lg,Ly]. Here,rs=2.07%y, =0, andk=0.2g, kr be-

ing the Fermi wave vector. .
9 approach bulk. As we move into the vacuukvp—v cor-

) HEGAHEG i HEG rectly goes to zero. Next we consider the effective potential
+AG. The leading termG™>G"™™>, givesP™=>, the others \y in the more intuitive direct space representation
can be evaluated numerically, becals®(w) goes to zero as (r1,r,,®) obtained by anti-FT with respect tq. For sim-

|w["¥2 when|w| — . _ _ plicity, we limit our discussion to the static caée=0) and
The same procedure can be adopted in the calculation fonsider collinear points on the normal to the surface
the correlation term of the self-energy, i.&¢=iG(W-v). =r,). Figure 3 shows\, as a function ofz from bulk to
However, the differenckV-v already decays fast enough to yacuum:W, is similar to a Yukawa screened potential for
ensure convergence. . andz, in bulk, and it coincides with the bare Coulomb inter-
Omitting the dependence dnandw, we rewrite Dyson's  action forz, andz, in vacuum. Some intermediate values are
equation(9) for W, as shown: forz, fixed near the surfaca\, is no longer a sym-
metric function ofz, with respect toz;, as the screening is
_ 1 _ inhomogeneous.
Wo(z1,2) _f iz e™(21,29v(|2%5~ 2. In Fig. 4 we report the contour levels of the self-energy

evaluated ak;=0 andw=pu, u being the chemical potential.
wheree™! is defined by the inversion of over the wholez A particular feature in the near-surface region is the “Ara-
axis. Since the asymptotic value of* are known from the bian” shape of the contours levels. This is an effect of the
HEG, this function has to be evaluated on a finite intervalinhomogeneous density at the metal surface: wheandz,
U,=[zs,2/]. We exploit the lemma in Appendix A and re- lie outside jellium, the self-energy, 48—z, increases, de-
strict the inversion to the finite intervaV,=[Lg,Ly], creases in a slower way than in bulk owing to lower screen-
U, CV.. Correct values ot Y(z;,z,) for z;,2z, € U, are ob- ing. This particular feature of the surface cannot be repro-
tained if Ly and Ly are conveniently large. This concept is duced by models based on an average density, as the one
graphically presented in Fig. 1, where we shew for dif- proposed in Ref. 20 and successfully tested for bulk materi-

ferent values otz andL,. The negative peak far;,z,=Lg

(on the left of each plotrepresents a spurious feature intro- ? T T T " T
duced when the region of integration is restricted to a finite 2 W—
interval. This behavior is located at the boundariesVof o v
regardless of its size, as'(z;,2,) is different from zero only =
for values ofz, close toz;. Hence the intervaV/, has to be := \\n 10
only slightly larger tharlJ,. For the values described in Fig. 5 Fa= 5
1, if zg=-15a,, the choiceLg=—20gq, is already an accurate £ // o
one. A similar discussion has to be done with respedt,to 2 7 ' — 7 =0
but in this case the spurious peak is much smaller. i | d r../' N
We discuss the calculated effective potential by displaying 2 VAN 5
first the contour levels of the difference between the effective 8 - ' ‘\-I-- : : . 10
and bare interactioy—v in the z;,z, plane in Fig. 2. This = 10 P 0 P 10
is also a convenient test to check the convergence of the Distance from the surface z, (dq)
inversion procedure of the dielectric function, in terms of the
resultingW,. The HEG levelg(thinner lineg of Wy—v are FIG. 3. Effective and bare Coulomb interaction near the jellium

also reported. The agreement is excellent whgrand z,  surface for points aligned on the normal. Here 0. r=2.07,.
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-5 0 5 V. CONCLUSIONS

45 We have presented a method to investigate infinite non-
periodic systems in the framework of the GWA. Calculations
can be performed in finite regions, without introducing non-
physical boundary conditions, such as confining bariiers
i slab approachor a 3D fictitious periodicity(the supercell
one. In such systemge.g., a solid with a surfagalensities
of states are continuous, and while really discrete states may
exist inside gaps, other ones become resonances when they
do overlap in energy with a continuum band. The proposed
0025 - ; . . -
P — method is particularly suitable for the description of these
0100 —— systems. In fact on the one side the embedding approach,
S . 0200 e - which allows for calculating a truly continuous density of
5 0 5 states, includes automatically the hybridization between bulk
Distance from the surface z, (ag) and surface states. On the other many-body effects, whose
treatment is needed for excited states or image potential
FIG. 4. Self-energ¥xc(z1,2,k, w) for rs=2.07a,, k=0, and  ones, are accounted for at the GWA level.
w=u. Inset: model in Ref. 20. On the contrary a DFT slab calculation of such systems
(e.g., inthe LDA or GGA.is only able to work out a spectral

als (see the inset in Fig.)4Since the origin of this phenom- Weight constituted by delta functions, one for each discrete
enon is the inhomogeneity of the surface density and not theigenstate, while the. real stru.cture of_the spectrum may be in
continuous spectrum description, a thick enough slab shoul@eneral more complicate as just outlined. The GWA correc-
reproduce the same density and hence the same findings. fion cannot amend by itself this result, but only determine a
The spectral properties of the system are the final goal dproadening of quasiparticle statgsus eventually minor ad-

this method. They can be accessed from the many-bod itional structures due to many-body correlations. This
spectral weight function roadening, which can be evaluated in first approximation by

taking the average value of the self-energy over the DFT
state, may be much smaller than that due to hybridization
1 effects, as it is the case for IPI resonances.
Az k), w) =——Im G(z,z k), w)sgnw — w). (14) In this paper we have also extensively investigated semi-
o e e . . . .
infinite jellium by our approach. We have illustrated the
As discussed in Sec. Il E, to solve Dyson'’s Ef). for the  bulk-to-vacuum transition of the many-body electron gas
Green functiorG, one identifies the kernel @ of Eq. (12) properties. By comparing the LDA and GWA density of
with & and adds an imaginary parA to the frequency to states, this method has been able to identify an image poten-
make e;(é(zl,zz) decay to zero a$z;-z| goes to infinity, tial surface resonance of large widthExtension of this ap-
thus satisfying the hypothesis of the lemma in Appendix A.proach to semi-infinite realistic surfaédscould bring a
Then the same procedure as just shown for the effective povealth of accurate data on the spectral properties of surfaces
tential follows. We experienced that an interwd) about and adsorbates, especially regarding the excited states.
1008, wide was needed for a value af of about 0.05 Har-
tree, in order to describe the surface region correctly. ACKNOWLEDGMENTS
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APPENDIX A: INVERSION OF INFINITE MATRICES

Consider the equations defining the inverse of a makrix
on two different volumeg) andV, with VC:

= J iy A(zk 15
o(z,0) = (2m)? (z k), w). (15
The evaluation of the LDOS of semi-infinite jellium in
this framework demonstrates the presence at the surface of a

broad image-potential inducedIPl) resonance, which
emerges sharply when results are compared to DFT-LDA f drsA(r 1, P A (rar o) = 8(F1,f), Tolpe V.

ones. We stress that an IPI resonance width can only be v

obtained by a many-body approach like ours which takes (A2)
into account the semi-infinite character of the solid. We refer

to Ref. 12 for the results and a detailed discussion on thign generalA,! is different from the restriction oAy in V.
topic. However, the following lemma gives a condition for the two

f dl’3A(r1,r3)A(_)1(r3,r2):5(r1,r2), rnrpe,
Q

(A1)
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matrices to coincide on a smaller subksr VC (). ) (" _
Lemma.lf Agl(r,,r,)=0 for all r;eQ-V andr,e U, So(p+iu) = IJ_ do'Go(o" + p+iu)Wp(w'), (B2)
then A (r,,r)=AyX(rq,r,) forall ry,r,eU. o
Proof. consider Eq(Al) forr, e Vandr, e U, multiply it ~ where the analytic continuation /(»’=iu’) is evaluated
by AX(r4,r,) and integrate i, overV: by insertingPg(iu) into Dyson’s equation. Note that the Le-
hmann representation &, implies that a pole of W, has
o o o sgn(lm z)=-sgr(Re 2).
f driAy(ra,ry) | draA(rg,ra)Ag(ra,ra) = Ay (ra,ro). The self-energy resulting from E@B2) will be known on
v Q the complex linew=u+iu. This is useful for the evaluation
) i ) o , of integral propertiege.g., the total energybut for spectral
The integral inr; over(} is spI|t_|lnto an integral oV andon  hronerties the Green functigand hence the self-enenglyas
Q-V. The first integral yield#\,(r4,r2), the latter vanishes  to pe evaluated at real frequencies. To this end, one can fit
becauseAg(rq,r,)=0 forr; e -V andr, e U. Sc on the complex axis with a simple analytic expression,
As a consequence of the lemma, if we are interested in th be continued to the real axi3The multipole one is per-
values ofA;ll in a subset of the possibly infinite volumé, haps the more common:

it is sufficient to invertA on a suitabldarger subsetV, with N
VC . Quite generally, the functions of interest have the Exc(w)=ao+2 b; _ (B3)
property Agl(r,,r,) —0 as|r,—r,| —%. Therefore, the hy- S o-g

pothesis of the lemma can be regarded as true to any degr%\e

of accuracy, for a large enough 3ét small number of polegN=2~4) normally provides a

good fit.
To rotate the integration path in frequency space we recall
APPENDIX B: ANALYTIC CONTINUATION the following useful result. Consider the two integrals, where

OF FREQUENCY INTEGRALS , & andb are real:
1

(0" -z)(w+ ' -2

+o0
The presence of nonanalyticities close to the contour of Fi(w) :f do’
frequency integration renders it difficult to integrate expres- -
sions containing the Green functi@ and the effective po-

tential W numerically, as for the polarizatiditq. (4)] or the _.sgr(lmz,) — sgr(lmz,) B4
self-energy[Eq. (6)]. Consider the integral in Eq4) first. =l w-2+7 ' (B4)
The Green function has polésr cutg just below the reab
axis for o> u and above fow < u. Therefore, ifzis a pole arior 1

int i - = ) F = do’ :
ora po_ln/t in the cut, sdm—-Rez) sgr{lm z). Note that the . o(w) . ) (@ -2)(b+ 0+ o —2)
factor€® ” means that only the residues related to occupied
stateq w < u) are summed. To avoid the numerical difficulty, _ _ _
one can define the analytic continuation Bfto complex =i sgra-Rez) - sgria+b Rezz). (B5)

frequencies as the sum over the same residues, now evalu- btio-2+2

ated at the complex frequentlt is easy to show that in the The two numerators are equal if $gnz)=sgra-Rez,)

case of purely imaginary frequencies this corresponds to ro: _ h . . _
tate the integration contour to the complex frequency axi and SgNimz,) =sgra+b-Rez,). In this case:F(w)=Fy(b

S . . . . .
- . . 7 T +iw), i.e., F, is the analytic continuation df, to complex
+ . ; . . : }
piu’ (u,u” real. In the GWA the continued polarization is frequenciedb+iw. Notice that, to be analytic, the continua-

oo tion has to be performedfter the integration. If botte; and
Po(iu) = - 2if dw'Gy(w’ +iu)Gy(w’). (B1)  Z are poles of the time-ordered Green functjas for the
i polarization in Eq(4)], it follows from the Lehmann repre-

sentation that the condition is met far u andb=0. If z; is
On the same footing, also the self-enelf@q. (6)] can be a pole of the effective interaction amg is a pole of the
continued to complex frequencies.df u+iu, the following  time-ordered Green functiofas for the self-energy in Eq.
relation holds: (6)], the condition is met for=0, b= .
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