888 research outputs found

    Numerical analysis of energy recovery system for turbocharged internal combustion engines via a parallel compounding turbine

    Get PDF
    Increasing energy efficiency requirements mandatory ask for optimizing energy utilization in many devices, which include internal combustion engines. One of the most investigated subjects is the energy recovery from the exhaust, such as turbo-compound systems, which usually consist in a secondary turbine located afterward the turbocharger. Here an alternative arrangement is proposed and analysed via a numerical model. The recovery turbine works in parallel to the main turbine and uses the gasses which would be otherwise wasted through the waste-gate valve, once the set-point boost pressure is reached. The reference case analysed is a 12.4L turbocharged diesel engine, commonly used in marine, road and light railroad applications, with a nominal power of 380kW. The results showed that an overall 8% of power can be gained, without nor increasing the fuel mass flow rate, neither requiring significant modifications to the baseline engine. Moreover, in the case of the recovery system failure, the operation of the engine is not affected, thus resulting in no engine availability reduction. This work also shows a feasible way to convert the mechanical energy delivered by the recovery turbine into electrical energy, by making use of a high-speed electrical generator

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Incidental findings detected with panoramic radiography: prevalence calculated on a sample of 2017 cases treated at a major Italian trauma and cancer centre

    Get PDF
    Objectives: This study aimed to assess the prevalence of incidental findings, not strictly related to dentistry, viewed with panoramic radiography. Methods: Panoramic radiographs performed between December 2013 and June 2016 were retrospectively collected. These images were analyzed, searching for incidental findings. All the information collected was statistically analysed Results: A total of 2307 Panoramic Radiograph were analyzed and 2017 of them were included in the study. 529 incidental findings were seen: 255 (48.2%) were ESP (Elongation of Styloid Process), 167 were CAC (Carotid Artery Calcification) (31.57%), 36 were maxillary sinus pathologies (6.8%) and 71 were other incidental findings (13.42%). The total prevalence of IF was 26, 23%., CAC was 8.28% in the total population, and it was higher in women (9.82%) than men (6.54%). 48.5% of CAC were bilateral. When unilateral, the right side showed a higher right side prevalence. The prevalence of ESP was 12.64% in total population (men: 13.82%; women: 11.60%). 84.71% of ESP were bilateral and, when present unilaterally, no side difference was seen. 13.33% of the ESP appeared segmented. The prevalence of maxillary sinus pathologies was 1.78% (men: 2.32%; women: 1.31%). Only 8.33% of these pathologies were bilateral, and, when unilateral, they were mostly present on the right side. Between the 71 other IF (prevalence: 3.52%), sialoliths and tonsilloliths were assessed most frequently. Conclusion: Due to the high prevalence of incidental findings detected with panoramic radiography, dental practitioners should be aware of the various pathologic conditions seen on the panoramic radiographs

    Charged particle LET-spectra measurements aboard LDEF

    Get PDF
    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

    Snow metamorphism: a fractal approach

    Full text link
    Snow is a porous disordered medium consisting of air and three water phases: ice, vapour and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameter. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level

    Growth form and leaf habit drive contrasting effects of Arctic amplification in long-lived woody species

    Get PDF
    Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967-2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics
    • …
    corecore