915 research outputs found

    Lifetime and polarization of the radiative decay of excitons, biexcitons and trions in CdSe nanocrystal quantum dots

    Get PDF
    Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X+ and X−), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is ~1:1 in large dots (R=19.2 Å). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 Å). (iii) The calculated ratio (X+):(X−) between positive and negative trion lifetimes is close to 2 for all dot sizes considered

    Comment on "Quantum Confinement and Optical Gaps in Si Nanocrystals"

    Full text link
    We show that the method used by Ogut, Chelikowsky and Louie (Phys. Rev. Lett. 79, 1770 (1997)) to calculate the optical gap of Si nanocrystals omits an electron-hole polarization energy. When this contribution is taken into account, the corrected optical gap is in excellent agreement with semi-empirical pseudopotential calculations.Comment: 3 pages, 1 figur

    Strict inequalities of critical values in continuum percolation

    Full text link
    We consider the supercritical finite-range random connection model where the points x,yx,y of a homogeneous planar Poisson process are connected with probability f(∣y−x∣)f(|y-x|) for a given ff. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality pcsite>pcbondp_c^{\rm site} > p_c^{\rm bond}. We also show that reducing the connection function ff strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on ff (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.Comment: 38 pages, 8 figure

    Covering algorithms, continuum percolation and the geometry of wireless networks

    Get PDF
    Continuum percolation models in which each point of a two-dimensional Poisson point process is the centre of a disc of given (or random) radius r, have been extensively studied. In this paper, we consider the generalization in which a deterministic algorithm (given the points of the point process) places the discs on the plane, in such a way that each disc covers at least one point of the point process and that each point is covered by at least one disc. This gives a model for wireless communication networks, which was the original motivation to study this class of problems. We look at the percolation properties of this generalized model, showing that an unbounded connected component of discs does not exist, almost surely, for small values of the density lambda of the Poisson point process, for any covering algorithm. In general, it turns out not to be true that unbounded connected components arise when lambda is taken sufficiently high. However, we identify some large families of covering algorithms, for which such an unbounded component does arise for large values of lambda. We show how a simple scaling operation can change the percolation properties of the model, leading to the almost sure existence of an unbounded connected component for large values of lambda, for any covering algorithm. Finally, we show that a large class of covering algorithms, which arise in many practical applications, can get arbitrarily close to achieving a minimal density of covering discs. We also construct an algorithm that achieves this minimal density

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R−1.01R^{-1.01} (not R−2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R−1.79R^{-1.79} (R−0.7R^{-0.7}), and that the eccitonic gap sclaes as R−0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}

    Full text link
    A first-principles derived approach is combined with the inverse Monte Carlo technique to determine the atomic orderings leading to prefixed properties in Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements between Sc and Nb atoms result in drastic changes with respect to the disordered material, including ground states of new symmetries, large enhancement of electromechanical responses, and considerable shift of the Curie temperature. We discuss the microscopic mechanisms responsible for these unusual effects.Comment: 5 pages with 2 postscript figures embedde

    Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots

    Full text link
    We adopt an atomistic pseudopotential description of the electronic structure of self-assembled, lens shaped InAs quantum dots within the ``linear combination of bulk bands'' method. We present a detailed comparison with experiment, including quantites such as the single particle electron and hole energy level spacings, the excitonic band gap, the electron-electron, hole-hole and electron hole Coulomb energies and the optical polarization anisotropy. We find a generally good agreement, which is improved even further for a dot composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review

    Function computation via subspace coding

    Get PDF
    This paper considers function computation in a network where intermediate nodes perform randomized network coding, through appropriate choice of the subspace codebooks at the source nodes. Unlike traditional network coding for computing functions, that requires intermediate nodes to be aware of the function to be computed, our designs are transparent to the intermediate node operations
    • 

    corecore