
Function computation via subspace coding
Nikhil Karamchandani∗ Lorenzo Keller† Christina Fragouli† Massimo Franceschetti∗

∗Dept. of Electrical and Computer Engineering †School of Computer and Communication Sciences
UCSD, USA EPFL, Switzerland

{Email : nikhil@ucsd.edu, lorenzo.keller@epfl.ch, christina.fragouli@epfl.ch, massimo@ece.ucsd.edu}

Abstract—This paper considers function computation in a
network where intermediate nodes perform randomized network
coding, through appropriate choice of the subspace codebooks
at the source nodes. Unlike traditional network coding for
computing functions, that requires intermediate nodes to be
aware of the function to be computed, our designs are transparent
to the intermediate node operations.

I. I NTRODUCTION

In sensor networks, the need for energy efficiency has
stimulated research efforts towards in-network aggregation and
function computation, see for example [1], [2]. Recent work
[3], [4] has also pointed out the need to havesimplecoding
schemes, since “systems are hard to develop and debug”. They
advocate a solution where most nodes in the network perform
the same operations regardless of the function to be computed,
and the onus of guaranteeing successful computation is on a
few special nodes that are allowed to vary their operation.

Motivated by the above considerations, we consider the
problem of computing functions in a network where multiple
sources are connected to a single sink via relays. The sources
may have several different possible codebooks, and can select
which one to employ depending on the function to be com-
puted. Given a certain target function, each source transmits
a codeword corresponding to its observed message. The re-
lay nodes, however, perform randomized network coding [5]
irrespective of the target function, i.e., source codewords are
randomly combined and forwarded towards the sink, using
linear coefficients that are unknown to both the sources and
the sink. The sink then proceeds to evaluate the target function
of the source messages.

Following [6]–[8], we use subspace coding for computing
functions in our network model. Given a target function,
we assume that each source uses a codebook consisting of
subspaces. Each source message is associated with a corre-
sponding subspace. When a source generates a message, it
injects the basis vectors of the corresponding subspace into the
network as codewords. The network operation is abstracted by
assuming that the sink collects enough linear combinationsof
the source codewords to learn the joint span of the injected
subspaces. Given this information, the sink then attempts to
compute the target function of the source messages. Our
objective is to design codebooks which minimize the number
of symbols each source needs to transmit, while guaranteeing
successful function computation by the sink.

Thus, we envision a network architecture where intermedi-
ate network nodes always perform the same operations for the

information transfer, which leads to a simple implementation.
At the same time, the sink has the flexibility to utilize the
network to learn different functions of the source data by
informing the source nodes to employ the corresponding
codebooks.

The paper is organized as follows. Section II presents the
problem formulation. In Section III, we present a simple
scheme to compute theidentity function, i.e., to reconstruct
all the source messages, and then describe a class of “hard”
functions for which it is optimal (in an order sense) to first
compute the identity and then compute the function value. We
continue by designing near-optimal coding schemes for some
“easy” functions, i.e., functions which can be computed by
transmitting less symbols by the sources than what is required
to compute the identity: these are theT -threshold, maximum
and K-largest valuesfunctions considered Section IV. In
Section V-A, we present a lower bound on the number of
symbols each source needs to transmit to evaluate an arbitrary
function, and a constructive scheme to evaluate arbitrary
functions.

II. PROBLEM FORMULATION

x1∈A∪{φ}

x2

Πx1

1
⊆ F

l
q

xN

Network
N

Sink
ρ

f (x1, . . . , xN)

N∑

i=1

Πxi

i

We consider a set ofN sourcesσ1, σ2, . . . , σN connected
to a sinkρ via a networkN . Each sourceσi is either inactive
or observes a messagexi ∈ A, whereA is a finite alphabet.
For ease of notation, when a sourceσi is inactive we will set
xi = φ. The sink needs to compute atarget functionf of the
source messages, wheref is of the form

f : (A ∪ {φ})N −→ B.

We consider operation using subspace coding. The network
works as follows.

• At each source, every alphabet symbol is mapped to a
subspace, which serves as the corresponding codeword.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thus, each sourceσi has an associated codebookCi ={
πj

i

}

j∈A
whereπj

i is a d-dimensional subspace1 of an

l-dimensional vector spaceFl
q whered, l ≥ 1 are design

parameters. When the sourceσi is active and observes a
messagexi ∈ A, it injects into the networkN a set ofd
vectors fromF

l
q which span the subspaceπxi

i . When the
source isσi inactive, it does not make any transmissions
and hence we setπφ

i = ∅.
• The sinkρ receives from the networkN a set of vectors

from F
l
q which span the union of the input subspaces2,

i.e., ρ observes
∑N

i=1 πxi

i .
• The sink uses the received information to compute the

value off (x1, x2, . . . , xN).
A (d, l) feasible code for computingf is a collection of

codebooks{C1, C2, . . . , CN} such that eachπj
i in the code-

books is ad-dimensional subspace ofFl
q and the sink can

compute the value off (x1, x2, . . . , xN) for any choice of
input messagesx1, x2, . . . , xN where eachxi ∈ A ∪ {φ}.

For a (d, l) feasible code for computingf , each source
transmits at mostd · l symbols fromFq, and we thus consider
the associated cost to bed·l. Our code design seeks to achieve

Emin(f)=inf {d · l : ∃ a (d, l) feasible code for computingf} .

We will denote the dimension of any subspaceπ by dim(π).
Also, for any vectorx, the j-th component will be denoted
by (x)j . Consider a set of indicesI =

(
i1, i2, . . . , i|I|

)
⊆

{1, 2, . . . , N}. For any a =
(
a1, a2, . . . , a|I|

)
∈ (A ∪

{φ})|I| and any vectorx ∈ (A ∪ {φ})N , let x(I,a) =
(x1, x2, . . . , xN) denote a vector which is obtained fromx
by substituting the components corresponding to the index
set I with values from the vectora and retaining all the
other components. That is, for eachj ∈ {1, 2, . . . , |I|},
(x(I,a))ij

= (a)j and for eachk 6∈ I, (x)k = (x(I,a))k .
We conclude this section with a lemma that is often used in
the subsequent sections.

Lemma II.1. For any collectionπ1, π2, . . . , πK ⊆ F
l
q of d-

dimensional subspaces, let

πi 6⊆
∑

j<i

πj ∀ i ∈ {1, 2, . . . ,K}. (1)

Thend · l ≥ K.

Proof: (1) implies that there exists a collection ofK
linearly independent vectorsv1,v2, . . . ,vK ∈ F

l
q such that

vi ∈ πi for every i ∈ {1, 2, . . . ,K}. This implies thatl ≥ K,
the result then follows.

III. F UNCTIONS WHICH ARE MAXIMALLY HARD TO

COMPUTE

Any target function can be computed by first reconstructing
all the source messages at the sink (i.e., computing the

1Although restricting our code design to subspaces of equal dimension may
not always be optimal, it significantly simplies the design, and is a standard
approach in the literature [6], [9].

2The union of two subspacesπ1, π2 is defined asπ1 + π2 = {x + y :

x ∈ π1,y ∈ π2}.

identity functionf(x1, x2, . . . , xN) = (x1, x2, . . . , xN)) and
then deriving the function value. Hence, the following lemma
provides an upper bound ond · l for any functionf .

Lemma III.1. There exists a(d, l) feasible code for computing
the identity function such that

d · l = N + ⌈logq |A|⌉.

Proof: It is easy to see that this can be achieved simply by
using coding vectors of lengthN , where sourcei for example
uses the basis vectorei as its coding vector and appends this
to the information packet that consists of⌈logq |A|⌉ symbols.

Consider the caseN ≥ logq |A|. Next, we present a class
of functions for whichd · l is required to grow linearly with
respect to the number of sourcesN . Thus, the number of
transmissions that each source makes for the computation of
such functions is almost the same (in the order sense) as that
required to reconstruct all the source messages. For any vector
x ∈ (A ∪ {φ})N , let Ix denote the index set corresponding
to the components which are notφ. Then, consider a target
function f which satisfies the following property with some
constantα ∈ (0, 1].

Function propertyP(α) : There exists a vectorx∗ =
(x∗

1, x
∗
2, . . . , x

∗
N) with |Ix∗ | ≥ αN such that for eachk ∈ Ix∗ ,

f (x∗({k}, φ)) 6= f (x∗) . (2)

This implies that the function value is sensitive to whetherany
specific sourceσk is active or not.

Example III.2.

• The identity function satisfies propertyP(1) by choosing
eachx∗

i equal to any element of the alphabetA.
• The arithmetic sum function satisfies propertyP(1) by

choosing eachx∗
i equal to some non-zero element of the

alphabetA.
• The parity function (A = {0, 1}) satisfies propertyP(1)

by choosing eachx∗
i equal to1.

• The majority function (A = {0, 1}) satisfies property
P(1/2) by choosing the firstN/2 x∗

i ’s equal to1 and
the rest equal to0.

Lemma III.3. Let f be a function which satisfies the property
P(α). Then,

Emin(f) ≥ αN.

Proof: From (2), any(d, l) feasible code for computing
the functionf must satisfy the following condition. For each
k ∈ Ix∗ ,

π
x∗

k

k +
∑

j 6=k

π
x∗

j

j 6=
∑

j 6=k

π
x∗

j

j =⇒ π
x∗

k

k 6⊆
∑

j 6=k

π
x∗

j

j .

Since |Ix∗ | ≥ αN , the proof then follows from Lemma II.1.

Comment: Lemma V.4 provides a general lower bound
on Emin(f) for arbitrary functions. Functions for which the
lower bound is of the same order asN + ⌈logq |A|⌉ are also

maximally hard to compute.

IV. B OUNDS FOR SPECIFIC FUNCTIONS

A. T -threshold Function

Let A = {1}. The T -threshold function is defined as3

f (x1, x2, . . . , xN) =

{
1 if x1 + x2 + . . . + xN ≥ T

0 otherwise.

Lemma IV.1. There exists a(d, l) feasible code for computing
the T -threshold function withT < N/2, such that

d · l ≤ O

(
NHq

(
T

2N

))
.

Proof: Consider the following scheme.

A (1, l) code for theT -threshold function :

• Let H be thel × N parity check matrix of a binary

code with minimum distancedmin = T + 1.

• Sourceσi usesCi = {hi}, wherehi is a column ofH.

• If the dimension of the subspace that the sink receives

is less thanT , it outputs0. Otherwise, it outputs1.

The above scheme uses al×N parity check matrix of a binary
code with minimum distancedmin = T + 1. From [10], there
exists such a matrix with

l ≤ O

(
NHq

(
T

2N

))
.

Since all sources transmit one-dimensional subspaces, the
result follows.

Comment : For a constant T , O
(
NHq

(
T
2N

))
=

O
(
T logq N

)
. Thus, while computing the identity function

requiresd · l to grow linearly with the number of sourcesN ,
the T -threshold function requires only logarithmic growth.

We have the following matching lower bound.

Lemma IV.2. For the T -threshold functionf with T < N/2,

Emin(f) ≥
N

2
Hq

(
T

2N

)
.

whereHq is theq-ary entropy function.

Proof: Consider two possible input vectors
(x1, x2, . . . , xN) and (y1, y2, . . . , yN) such that

xi = 1 ∀ i ∈ {1, 2, . . . , T} andxi = φ otherwise

yi = 1 ∀ i ∈ {2, 3, . . . , T} andyi = φ otherwise.

Note that

1 = f(x1, x2, . . . , xN) 6= f(y1, y2, . . . , yN) = 0

and hence it is necessary for any(d, l) feasible code for

3For any integera, we seta+φ = a. Thus, the function computes whether
the number of active sources is at leastT or not.

computingf that

π1
1 +

T∑

i=2

π1
i 6=

T∑

i=2

π1
i =⇒ π1

1 6⊆
T∑

i=2

π1
i .

The same argument can be extended to get the follow-
ing necessary condition. For any subset(i1, i2, . . . , iT) of
{1, 2, . . . , N},

π1
ij
6⊆

∑

k 6=j

π1
ik

for every j ∈ {1, 2, . . . , T}.

Denote the basis vectors for anyπ1
i by

(
v

1

i
,v2

i
, . . . ,vd

i

)
.

Construct a vectorv∗
i

of length d · l by concatenating
the d basis vectors. From the necessary condition on the
subspacesπ1

1 , π1
2 , . . . , π1

N , any collection ofT vectors from
v
∗
1
,v∗

2
, . . . ,v∗

N
are linearly independent. Ad · l × N matrix

with the vectorsv∗
1
,v∗

2
, . . . ,v∗

N
as columns corresponds to

the parity check matrix for a linear code of lengthN and
minimum distance at leastT + 1. Using the bounds in [10],
for T < N/2 we have

d · l ≥ NHq

(
T

2N

)
−

1

2
logq

(
4T

(
1 −

T

2N

))
.

The result then follows since

1

2
logq

(
4T

(
1 −

T

2N

))
≤

N

2
Hq

(
T

2N

)
. (3)

For N ≤ 11, (3) can be verified numerically. LetN ≥ 12.
Then (3) holds if we show that for every1 ≤ T < N/2,

N ·
T

2N
ln

(
2N

T

)
≥ ln(4T) or equivalently,

T ln

(
2N

T

)
− 2 ln(4T) ≥ 0. (4)

For T = 1, (4) holds sinceN ≥ 8. Differentiating the left-
hand side of (4) with respect toT , we get

ln(2N) − ln(T) − 1 −
2

T

which is greater than zero sinceN ≥ 12 andT ≤ N/2. Thus,
(4) is true for every1 ≤ T < N/2 and thus (3) holds.

B. Maximum Function

Lemma IV.3. There exists a(d, l) feasible code for computing
the maximum function such that

d · l ≤ min
{
|A| , N + ⌈logq |A|⌉)

}
.

Proof: Consider the following two schemes for computing
the maximum function4.

• A (1, |A|) scheme: Let v1,v2, . . . ,v|A| be linearly inde-
pendent vectors of length|A| each. For every sourceσi,
let Ci =

(
v1,v2, . . . ,v|A|

)
. This scheme hasd · l = |A|.

• A (1, N + ⌈logq |A|⌉) scheme: We can compute the
identity function withd · l = N + ⌈logq |A|⌉ and hence

4For anya ∈ A, we setmax{a, φ} = a.

can compute the maximum function also. This scheme is
useful if A ≥ N .

Comment: Thus when|A| ≪ N , the first scheme is much
more efficient than reconstructing all the source messages.

Lemma IV.4. For the maximum target functionf ,

Emin(f) ≥ min{|A| , N}.

Proof: Let A =
(
a1, a2, . . . , a|A|

)
be an ordered set (in

increasing order) and letM = min{N, |A|}. Consider two
possible input vectors(x1, x2, . . . , xN) and (y1, y2, . . . , yN)
such that

xi = ai ∀ i ∈ {1, 2, . . . ,M} andxi = φ otherwise

yi = ai ∀ i ∈ {1, 2, . . . ,M − 1} andyi = φ otherwise.

Note that

M = f(x1, x2, . . . , xN) 6= f(y1, y2, . . . , yN) = M − 1

and hence any(d, l) feasible code for computingf must satisfy
the following condition.

M−1∑

i=1

πai

i + πaM

M 6=
M−1∑

i=1

πai

i =⇒ πaM

M 6⊆
M−1∑

i=1

πai

i .

The same argument can be extended to get the follow-
ing necessary condition. For any subset(i1, i2, . . . , iM) of
{1, 2, . . . , N} and any ordered subset (in increasing order)
(aj1 , aj2 , . . . , ajM

) of A,

π
ajk

ik
6⊆

∑

m<k

π
ajm

im
.

Then the result follows from Lemma II.1.

C. K-largest Values Function

Let A = (a1, a2, . . . , a|A|) be an ordered set (in increas-
ing order). For any given input vector(x1, x2, . . . , xN), let
(x̂1, x̂2, . . . , x̂N) denote the vector which is a permutation of
the input vector and satisfieŝxi ≥ x̂i+1 for eachi. Then the
K-largest values function is given by

f (x1, x2, . . . , xN) = (x̂1, x̂2, . . . , x̂K) .

Lemma IV.5. There exists a(d, l) feasible code for computing
the K-largest values function withK < N/2, such that

d · l ≤ |A| · O

(
NHq

(
K

2N

))
.

Proof: Consider the following scheme.

A (1, l) code forK-largest values function

• Let H be the(l/ |A|) × N parity check matrix of a

binary code with minimum distanceK + 1.

• If sourceσi takes valueaj from the alphabetA, then it

transmits a vector which is all zero except the

(j − 1) × (l/ |A|) + 1 to j × (l/ |A|) elements,

which take values from thei-th column ofH.

• Each vector in the union subspaceΠ that the sink

receives is parsed into|A| sub-vectors of lengthl/ |A|.

• Let Πj ⊆ F
l/|A|
q denote the subspace spanned by

collecting thej-th sub-vector of each vector inΠ.

• Let the number of sources which observe valueaj be

Nj . If Nj ≤ K, thendim(Πj) = Nj .

• Thus by calculatingdim(Π|A|), dim(Π|A|−1) . . . ,

the sink can compute theK largest values.

Again from [10], there exists a parity check matrix such that

l

|A|
≤ O

(
NHq

(
K

2N

))
.

Since all sources transmit one-dimensional subspaces, the
result follows.

Comment: Again, for constant|A| andK, d · l only grows
logarithmically with the number of sourcesN .

Lemma IV.6. For theK-largest values target functionf with
K < N/2,

Emin(f) ≥
N

2
Hq

(
K

2N

)
.

Proof: If the receiver can correctly compute theK-largest
values, then it can also deduce if the number of active sources
is greater thanK or not. Thus, it can also compute theT -
threshold function with the thresholdT = K. The result then
follows from Lemma IV.2.

V. A RBITRARY FUNCTIONS

A. A general lower bound

We begin with the following lemma.

Lemma V.1. The number of subspaces of dimensiond in F
l
q

is at most4qd(l−d) [6, Lemma 4].

Consider the following function property.Function property
P : For each sourceσk and anya, b ∈ A, there existsx such
that

f(x({k}, a)) 6= f(x({k}, b)).

Examples: The identity function and arithmetic sum function
satisfy propertyP. We have the following simple lower bound.

Lemma V.2. For any target functionf which satisfies property

P,

Emin(f) ≥ logq

|A|

4
.

Proof: For any(d, l) feasible code for computingf , each
source must assign a distinctd-dimensional subspace to each
a ∈ A. From Lemma V.1, we have

4qd(l−d) ≥ |A|

⇒ d · l ≥ logq

|A|

4
.

Consider the following general lemma.

Lemma V.3. Let π ⊆ F
l
q be a subspace of dimensiond1. Let

π1, π2, . . . , πK ⊆ F
l
q be d2-dimensional subspaces such that

for everyi 6= j, π + πi 6= π + πj . Then,

l ≥ max

√
logq(K − 1)

3
,
logq(K − 1)

3d2

 .

Proof: Denote the complement subspace ofπ by π
(π ∩ π = φ, π + π = F

l
q). Let < b1, . . . ,bd1

> be
a basis of π and < bd1+1, . . . ,bl > be a basis ofπ
so that together they spanFl

q. Now let < c1, . . . , cd2
>

denote the basis for any subspaceπi. Then eachci can
be expressed as a linear combination of thebi’s, that is,
ci = α1,ib1 + . . . + αl,ibl. Thus, π + πi is a subspace
spanned by< b1, . . . ,bd1

,
∑l

i=1 αi,1bi, . . . ,
∑l

i=1 αi,dbi >.
This is equivalent to the subspace spanned by<
b1, . . . ,bd1

,
∑l

i=d1+1 αi,1bi, . . . ,
∑l

i=d1+1 αi,dbi >, where
the lastd vectors are a linear combination of vectors inπ.
Therefore for each subspaceπi, there exists a subspacẽπi ⊆ π
such thatπ + πi = π + π̃i and π̃i ∩ π = φ. Then for every
i 6= j, π̃i 6= π̃j sinceπ + π̃i 6= π + π̃j . Further, each̃πi has
dimension at mostd2. Note that the dimension ofπ is l − d1

and each subspacẽπi is a subspace ofΠ. Since there areK
distinct π̃i’s, we have from Lemma V.1 that

1 + 4 ·

min{l−d1,d2}∑

j=1

qj(l−d1−j) ≥ K. (5)

Then, we have

4 ·
l−d1∑

j=1

qj(l−d1−j) ≥ K − 1

⇒ 4(l − d1) · q(
l−d1

2)
2

≥ K − 1

⇒ logq(4(l − d1)) +

(
l − d1

2

)2

≥ logq(K − 1).

Sincelogq(4(l − d1)) ≤ 2(l − d1)
2, we have

3(l − d1)
2 ≥ logq(K − 1)

⇒ l ≥

√
logq(K − 1)

3
.

From (5), we also have

4 ·
d2∑

j=1

qj(l−d1−j) ≥ K − 1

⇒ 4d2 · q
d̂(l−d1−d̂) ≥ K − 1 with d̂ = argmax

j∈{1,d2}

qj(l−d1−j)

⇒ logq(4d2) + d̂(l − d1 − d̂)+ ≥ logq(K − 1).

Sincelogq(4d2) ≤ 2d2 and d̂ ≤ d2, we have

2d2l + d2l ≥ logq(K − 1)

⇒ l ≥
logq(K − 1)

3d2
.

For anyx ∈ (A ∪ {φ})N andI ⊆ {1, 2, . . . , N}, let

Rx

I (f) =
∣∣∣{f (x(I,a)) : a ∈ (A ∪ {φ})|I|}

∣∣∣ (6)

denote the number of distinct values that the function takes
when only the arguments corresponding toI are varied and
all the others are held fixed according tox. Also, for any(d, l)
code, any input vectorx ∈ (A∪{φ})N andI ⊆ {1, 2, . . . , N},
let

ΠI
x

=
∑

i∈I

πxi

i .

Lemma V.4. For any target functionf ,

Emin(f) ≥

max
I,x :

Rx

I (f)>1

max

{√
logq (Rx

I (f) − 1)

3
,
logq (Rx

I (f) − 1)

3 |I|

}
.

Proof: Consider anyI ⊆ {1, 2, . . . , N} and any input
vector x. For any a,b ∈ (A ∪ {φ})|I|, if f (x(I,a)) 6=
f (x(I,b)), then any(d, l) feasible code should satisfy the
following condition.

∑

j∈{1,...,|I|}

π
aj

ij
+

∑

i∈Ic

πxi

i 6=
∑

j∈{1,...,|I|}

π
bj

ij
+

∑

i∈Ic

πxi

i

⇒ ΠI
x(I,a) + ΠIc

x
6= ΠI

x(I,b) + ΠIc

x
. (7)

Note that for anyI and a ∈ (A ∪ {φ})|I|, dim
(
ΠI

x(I,a)

)
≤

d · |I| since it is composed of the union of at most|I| d-
dimensional subspaces. Then, (7) and (6) imply that there exist
Rx

I (f) subspaces, each with dimesion at mostd · |I|, such that
the union of any one of them withΠIc

x
is unique. SinceI, x

were arbitrary, the result follows from Lemma V.3.

Example V.5.

• For the identity target functionf , the above bound gives

Emin(f) ≥
logq |A|

3
.

• For the arithmetic sum target functionf , we get

Emin(f) ≥

√
logq N |A|

3
.

Comment: Note that when|A| ≫ N , the bounds in the
above examples are better than the ones presented in previous
sections.

B. A general scheme for computation

We now present a general method to compute functions
under our network model. We will illustrate the method for
boolean functions of the formf : (A∪{φ})N → {0, 1}. For
a general function, the output can be considered as a string of
bits and the above scheme can be used separately to compute
each bit of the output.

Sincef has boolean output, it can be written as

f (x1, x2, . . . , xN) =

s∑

i=1

N∏

j=1

Bij

wheres is some integer such that1 ≤ s ≤ |A|N ; {Bij} are
boolean variables such that the value ofBij depends only on
xj ; and the sum and product represent boolean OR and AND.
By taking the complement, we have

f (x1, x2, . . . , xN) =

s∏

i=1

N∑

j=1

Bij .

Given any inputxj , sourcej creates a vectorvj of length s
such thati-th component isBij . Each sourcej then sends the
corresponding vectorvj into the network and the sink collects
linear combinations of these vectors. If thei-th component of
any of the vectors in the union subspace at the sink is1, then
a boolean variableAi is assigned the value1. This implies
that

Ai =

N∑

j=1

Bij

and hence,

f (x1, x2, . . . , xN) =

s∏

i=1

Ai.

Thus, we have a(1, s) scheme withd · l = s to compute any
function f with binary output.

Comment: Sinced · l = s, the above scheme is efficient
when the number of input vectors for which the function value
is 1 (or 0) is much smaller than the total number of possible
input vectors.

We now present an example to illustrate the above method.

Example V.6. Let B = {1, 2, . . . ,K} and let the source
alphabetA be the power set ofB, i.e, A = 2B. Then the
set cover function is defined as

f (x1, x2, . . . , xN) =

1 if B 6⊆
N⋃

i=1

xi

0 otherwise.

In words, each source observes a subset ofB and the sink
needs to compute if the union of the source messages covers

B. Define the boolean variable1A as follows.

1A =

{
1 if A is true

0 otherwise.

Then the functionf can be rewritten as

f (x1, x2, . . . , xN) =

K∑

i=1

N∏

j=1

1{i6∈xj}.

Then using the scheme described in this section, the set cover
function can be computed using a(1,K) code withd · l =
log2 |A| = K. This scheme is in-fact optimal in terms of the
smallest possibled · l for any feasible code.

VI. CONCLUSIONS

In this paper we investigated function computation in a net-
work where intermediate nodes perform randomized network
coding, through appropriate choice of the subspace codebooks
at the source nodes. Unlike traditional function computation,
that requires intermediate nodes to be aware of the functionto
be computed, our designs are transparent to the intermediate
node operations. Future work includes finding tighter bounds
for general functions as well as designing more efficient
schemes. Another direction of research would be to relax our
assumption that the sink is able to observe the joint span of the
injected subspaces and allow it to only learn some subspace
of the union.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,”IEEE Journal on Selected Areas in Communica-
tion, vol. 23, no. 4, pp. 755–764, Apr. 2005.

[2] ——, “Toward a theory of in-network computation in wireless sensor
networks,”IEEE Communications Magazine, vol. 44, no. 4, pp. 98–107,
Apr. 2006.

[3] J. Paek, B. Greenstein, O. Gnawali, K. Jang, A. Joki, M. Vieira, J. Hicks,
D. Estrin, R. Govindan, and E. Kohler, “The tenet architecture for tiered
sensor networks,”ACM Transactions on Sensor Networks (TOSN), 2009.

[4] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler, “The tenet architecture for tiered
sensor networks,” inProceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys), Oct 2006, pp. 153–166.

[5] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct. 2006.

[6] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,”IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591, Aug 2008.

[7] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Noncoherent mul-
tisource network coding,” inProceedings of the IEEE International
Symposium on Information Theory (ISIT), Jul 2008, pp. 817–821.

[8] C. Fragouli, M. Jafari Siavoshani, S. Mohajer, and S. Diggavi, “On the
capacity of non-coherent network coding,” inProceedings of the IEEE
International Symposium on Information Theory (ISIT), Jun 2009, pp.
273–277.

[9] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,”IEEE Transactions on
Information Theory, vol. 54, no. 9, pp. 3951–3967, Sep 2008.

[10] L. Keller, M. Siavoshani, C. Fragouli, K. Argyraki, andS. Diggavi,
“Identity aware sensor networks,” inProceedings of the IEEE Confer-
ence on Computer Communications (INFOCOM), Apr 2009, pp. 2177–
2185.

