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Abstract—This paper considers function computation in a information transfer, which leads to a simple implemeotati
network where intermediate nodes perform randomized network At the same time, the sink has the flexibility to utilize the
coding, through appropriate choice of the subspace codebooks hetwork to learn different functions of the source data by

at the source nodes. Unlike traditional network coding for . f - th d ¢ | th di
computing functions, that requires intermediate nodes to be Informing  the source nodes 1o employ the corresponding

aware of the function to be computed, our designs are transpare  codebooks.
to the intermediate node operations. The paper is organized as follows. Section Il presents the
problem formulation. In Section Ill, we present a simple
scheme to compute thieentity function, i.e., to reconstruct
In sensor networks, the need for energy efficiency hadl the source messages, and then describe a class of “hard”
stimulated research efforts towards in-network aggregaiind functions for which it is optimal (in an order sense) to first
function computation, see for example [1], [2]. Recent workompute the identity and then compute the function value. We
[3], [4] has also pointed out the need to hasimplecoding continue by designing near-optimal coding schemes for some
schemes, since “systems are hard to develop and debug”. Tteysy” functions, i.e., functions which can be computed by
advocate a solution where most nodes in the network perfotransmitting less symbols by the sources than what is reduir
the same operations regardless of the function to be comhput® compute the identity: these are tiiethreshold maximum
and the onus of guaranteeing successful computation is oarl K-largest valuesfunctions considered Section IV. In
few special nodes that are allowed to vary their operation. Section V-A, we present a lower bound on the number of
Motivated by the above considerations, we consider tlgmbols each source needs to transmit to evaluate an aybitra
problem of computing functions in a network where multipléunction, and a constructive scheme to evaluate arbitrary
sources are connected to a single sink via relays. The sourftections.
may have several different possible codebooks, and caontsele
which one to employ depending on the function to be com- [I. PROBLEM FORMULATION
puted. Given a certain target function, each source traasmi
a codeword corresponding to its observed message. The rg1 € AU{o}
lay nodes, however, perform randomized network coding [5] 7' C IFfI
irrespective of the target function, i.e., source codewark
randomly combined and forwarded towards the sink, using Iz.\

I. INTRODUCTION

N
P

linear coefficients that are unknown to both the sources and Network| 4
the sink. The sink then proceeds to evaluate the targetitumct * N = e@— f(z1,...,2N)
of the source messages. . Sink

Following [6]-[8], we use subspace coding for computing * P

functions in our network model. Given a target function,
we assume that each source uses a codebook consisting of “~
subspaces. Each source message is associated with a corre- .
sponding subspace. When a source generates a messa%e,VYP_CO”S'def a set ol sourcesoy, 0,...,on connected
injects the basis vectors of the corresponding subspaagriat © @ Sinkp via a network\'. Each source; is either inactive
network as codewords. The network operation is abstragted OPServes a message < A, where A is a finite alphabet.
assuming that the sink collects enough linear combinatiins ~O" €ase of notation, when a soureeis inactive we will set
the source codewords to learn the joint span of the injectdd= - The sink needs to computetarget functionf of the
subspaces. Given this information, the sink then attempts ¥0UTce messages, whefes of the form
compute the target function of the source messages. Our f o (Au{ehHN — B.
objective is to design codebooks which minimize the number
of symbols each source needs to transmit, while guaramfee¥Ye consider operation using subspace coding. The network
successful function computation by the sink. works as follows.

Thus, we envision a network architecture where intermedi-« At each source, every alphabet symbol is mapped to a
ate network nodes always perform the same operations for the subspace, which serves as the corresponding codeword.
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Thu_s, each source; has an associated codebo6k= identity function f(x1,z2,...,zn) = (21,22,...,2x)) and

{H} where! is a d-dimensional subspatef an then deriving the function value. Hence, the following leeam

“Jjea : . .
[-dimensional vector spad@f] whered, [ > 1 are design provides an upper bound af I for any function .

parameters. When the souregis active and observes aLemma Ill.1. There exists &d, () feasible code for computing

messager; € A, it injects into the networld\V" a set ofd  the identity function such that

vectors fromF,, which span the subspaag’. When the
e . ea d-1= N+ [log, |A[].

source iso; inactive, it does not make any transmissions q

and hence we set{ = (). Proof: It is easy to see that this can be achieved simply by
« The sinkp receives from the network/ a set of vectors using coding vectors of lengtlV, where source for example
from I, which span the union of the input subspécesyses the basis vectes as its coding vector and appends this
ie,p observest.\;1 . to the information packet that consists [dbg, |A|] symbols.
« The sink uses the received information to compute the ]
value of f (z1,z2,...,zN). Consider the cas&/ > log, |.A|. Next, we present a class
A (d,l) feasible code for computing is a collection of of functions for whichd - [ is required to grow linearly with
codebooks{C;,Cs,...,Cn} such that eachr! in the code- respect to the number of sourcés. Thus, the number of
books is ad-dimensional subspace dﬁ‘f] and the sink can transmissions that each source makes for the computation of
compute the value off (x1,z2,...,zn) for any choice of such functions is almost the same (in the order sense) as that
input messages;, o, ...,xy Where eachr; € AU {¢}. required to reconstruct all the source messages. For atgrvec
For a (d,l) feasible code for computing, each source x € (AU {¢})", let I, denote the index set corresponding
transmits at most - symbols from[F,, and we thus consider to the components which are ngt Then, consider a target
the associated cost to del. Our code design seeks to achievéunction f which satisfies the following property with some

. . . constantx € (0, 1].
Em(f)=int{d-1: 3 a(d,1) feasible code for computing} . Function érop]ertyP(a) : There exists a vectox* =

We will denote the dimension of any subspacey dim(w). (z7,3,...,z%) with |[Ix<| > aN such that for eack € I,
Also, for any vectorx, the j-th component will be denoted N .

by (x);. Consider a set of indices = (i1, is, ..., i|7) C F({k}, ) # f (7). )
{1,2,...,N}. For anya = (ai,a2,...,a7) € (AU Thisimplies that the function value is sensitive to whetiey
{oH)¥l and any vectorx € (A U {¢})V, let x(I,a) = specific sourcer; is active or not.

(z1,22,...,2N) denote a vector which is obtained from

by substituting the components corresponding to the indEx@mple I1l.2.
set I with values from the vectom and retaining all the « The identity function satisfies proped®(1) by choosing

other components. That is, for eagh € {1,2,...,|I|}, eachz; equal to any element of the alphahét
(x(I,a)), = (a); and for eachk ¢ I, (x), = (x(I,a)), - « The arithmetic sum function satisfies propeRy1) by
We conclude this section with a lemma that is often used in choosing eachr:} equal to some non-zero element of the
the subsequent sections. alphabetA.

» The parity function 4 = {0, 1}) satisfies propertyP(1)
by choosing each} equal tol.
o The majority function 4 = {0,1}) satisfies property

Lemma Il.1. For any collectionry, ms,..., 7 C IF‘f] of d-
dimensional subspaces, let

g Zﬂj Vie{l,2,...,K}. (1) P(1/2) by choosing the firstV/2 z}’s equal to1l and
i<i the rest equal td).
Thend -1 > K. Lemma lll.3. Let f be a function which satisfies the property
Proof: (1) implies that there exists a collection & P(a). Then, < S aN
linearly independent vectorgé;,vsa,..., vk € Fé such that mn(f) = aN.
vi € m; for everyi € {1,2,..., K}. This implies that > K, Proof: From (2), any(d, 1) feasible code for computing
the result then follows. B the functionf must satisfy the following condition. For each
I1l. FUNCTIONS WHICH ARE MAXIMALLY HARD TO ke I,
COMPUTE z z z; z; 5
: : : T T #E Y =t Ly
Any target function can be computed by first reconstructing ik s 2k

all the source messages at the sink (i.e., computing tg?nceu «| > aN, the proof then follows from Lemma 1.1

1Although restricting our code design to subspaces of equamsion may |
not always_ be op_timal, it significantly simplies the designd @ a standard Comment: Lemma V.4 provides a general lower bound
approach in the literature [6], [9]. . . . .

2The union of two subspaces, > is defined asr; + 7 — {x +y : ©ON Ean(f) for. arbitrary functions. Functions for which the
X €M,y € ma}. lower bound is of the same order a5+ [log, |.A|] are also



maximally hard to compute. computing f that

IV. BOUNDS FOR SPECIFIC FUNCTIONS M4y mAEY T =al > w.

A. T-threshold Function The same argument can be extended to get the follow-

Let A = {1}. The T-threshold function is defined &s ing necessary condition. For any subsef,is,...,ir) of
. {]‘727"'7N}’
)1 i ta+ . tay 2T
flan,zs,.. 2n) = 0 otherwise m €Y m, foreveryje{1,2,...,T}.
k#j
Lemma IV.1. There exists &d, [) feasible code for computing 2 d
the T-threshold function withl’ < N/2, such that Denote the basis vectors for amgj by (vi,v,...,v{ )
Construct a vectorv] of length d - [ by concatenatmg
T the d basis vectors. From the necessary condition on the
d-1<O(NH,|-—=)]. 1 1 .
2N subspacesry, 73, ..., Ty, any collection ofT’ vectors from
Proof: Consider the following scheme. v;_*,vg, ..., vy are linearly independent. & -1 x N matrix
with the vectorsvi,v3,...,vi as columns corresponds to
A (1,1) code for theT-threshold function : the parity check matrix for a linear code of lengith and

minimum distance at least + 1. Using the bounds in [10],

e Let H be thel x N parity check matrix of a binary for T < N/2 we have

code with minimum distancé,,,;,, = T + 1.
e Sourceo; usesC; = {h;}, whereh; is a column ofH. d-1 > NH, (5\{) _ %bgq <4T <1 _ 2?\7))
o If the dimension of the subspace that the sink receives )

is less tharil’, it outputs0. Otherwise, it outputg. The result then follows since

! 1 4T (1 T < NH r 3
The above scheme use$>aN parity check matrix of a binary 5 98 T 9N = 9 9\ 9N |- ®)
code with minimum distancé,,;,, = T + 1. From [10], there

. . For N < 11, (3) can be verified numerically. LeV > 12.
exists such a matrix with

Then (3) holds if we show that for evety< T' < N/2,

T
I<O|NH,|— . T 2N .
( ? (2N>) N - >N In (T) > In(47") or equivalently,
Since all sources transmit one-dimensional subspaces, the ON
result follows. | Tln (T) —2In(4T) > 0. (4)
Comment : For a constant?, O (NH, (%))

O (T'log, N). Thus, while computing the |dent|ty functionFor T = 1, (4) holds sinceN > 8. Differentiating the left-
requiresd - [ to grow linearly with the number of sourcé$, hand side of (4) with respect t, we get
the T-threshold function requires only logarithmic growth. 2

We have the following matching lower bound. (2N) —In(T) -1 - T

Lemma IV.2. For the T-threshold functionf with T < N/2, Which is greater than zero sin¢é > 12 and7T" < N/2. Thus,
N T (4) is true for everyl <T < N/2 and thus (3) holds. =
v > — ).
gmm(f) e 2 Hq <2N)

where H, is the g-ary entropy function.

B. Maximum Function

Lemma IV.3. There exists &d, ) feasible code for computing
Proof: Consider two possible input vectorsthe maximum function such that

(z1,22,...,2n) and (y1,yo, ..., yn) Such that d-1< min{\A| N + [log, |AH)} '
zi=1V Z €{1,2,....T} andz; = ¢ otherw_lse Proof: Consider the following two schemes for computing
yi=1Vie{23,....,T} andy; = ¢ otherwise. the maximum functioh
Note that o A(1,]A]) scheme Letvy,va,...,v 4 be linearly inde-
pendent vectors of lengthd| each. For every source;,
1= flzr,@2,...,on) # f(y1,92,. .., yn) =0 let C; = (v1,va,...,V|4). This scheme hag- I = |A|.

and hence it is necessary for ary,!) feasible code for * A (1,N + [log, |A[]) scheme: We can compute the
identity function withd -1 = N + [log, |.A|] and hence

3For any integer:, we seta+¢ = a. Thus, the function computes whether
the number of active sources is at ledsor not. 4For anya € A, we setmax{a, ¢} = a.



can compute the maximum function also. This scheme is Proof: Consider the following scheme.
useful if A > N.

A (1,1) code for K-largest values function

- e Let H be the(l/|A|) x N parity check matrix of a
binary code with minimum distanck” + 1.

o If sourceo; takes valuez; from the alphabet4, then it
transmits a vector which is all zero except the

Comment Thus when|A| <« N, the first scheme is much
more efficient than reconstructing all the source messages.

Lemma IV.4. For the maximum target functiof, (j—1)x (I/]|A]) +1tojx (I/]A]) elements,
Eun(f) > min{|A|, N}. which take values from théth column ofH.
e Each vector in the union subspaldethat the sink
~ Proof: Let A = (as, 0z, ... ,aj4]) be an ordered set (in | receives is parsed intod| sub-vectors of length/ |.A|.
increasing order) and let/ = min{N,|A|}. Consider two 1Al
possible input vectorsz,, zs, ..., ) and (y1,ys,...,yn) | ® L€ & Fg ™ denote the subspace spanned by
such that collecting thej-th sub-vector of each vector if.

e Let the number of sources which observe valyebe
N;. If N; < K, thendim(IT;) = N;.

e Thus by calculatinglim(IT) 4|), dim(IT| 4—1) ...,
the sink can compute thE largest values.

;i =a; Vie{l,2,...,M} andz; = ¢ otherwise
yi=a; Vie{l,2,...,.M — 1} andy; = ¢ otherwise.

Note that
]\/[:f(x171'27"')xN) #f(ylayQM"vyN) =M-1

and hence angd, ) feasible code for computing must satisfy

Again from [10], there exists a parity check matrix such that

the following condition. \ZW <0 <NHq (212(\7)) )
M-1 M-1 . ) . )
Z A L Z nl = gl Z o Since all sources transmit one-dimensional subspaces, the
’ result follows. [ ]

_Comment Again, for constant.4| and K, d -1 only grows

The same argument can be extended to get the follo L )
ogarithmically with the number of source€.

ing necessary condition. For any subsgét,io, ..., iy ) Of

{1,2,...,N} and any ordered subset (in increasing ordefemma IV.6. For the K-largest values target functiofi with

(aj17aj27"'7ajM) of A, K<N/2,

a7 ; N K
g Z z<:k7rzm 5.min(f) Z ?Hq <2]V_) .

Then the result follows from Lemma II.1. - Proof: If the receiver can correctly compute thélargest
values, then it can also deduce if the number of active ssurce
is greater thank or not. Thus, it can also compute thé
threshold function with the thresholl = K. The result then
follows from Lemma IV.2. |

C. K-largest Values Function V. ARBITRARY FUNCTIONS
A. A general lower bound

Let A = (a1,a2,...,a)4) be an ordered set (in increas- We begin with the following lemma.

ing order). For any given input vectdr, xs,...,xy), let ’

(Z1,29,...,2N) denote the vector which is a permutation Olf_emma V.1 d-(lghs number of subspaces of dimensibim F,

the input vector and satisfiés > 7., for eachi. Then the IS al MoStdq [6, Lemma 4].

K-largest values function is given by Consider the following function propertiunction property

fla1, 2. an) = (B1,32,...,5K). P : For each source; and anya,b € A, there existsc such
) b ) ) ) b that
Lemma IV.5. There exists 4d, 1) feasible code for computing f(x({k},a)) # f(x({k},0))-
the K-largest values function with < IN/2, such that Examples The identity function and arithmetic sum function
K satisfy propertyP. We have the following simple lower bound.
<o (i, (1)), lowna sl
2N Lemma V.2. For any target functiory which satisfies property



P, A From (5), we also have
gm\n f) Z log . do
( T4 4'qu(l7d17j) >K—1

Proof: For any(d, ) feasible code for computing, each =t )

source must assign a distinétdimensional subspace to each = 44, . ¢%(!~4 -9 > K — 1 with d = argmax ¢/~ %)
a € A. From Lemma V.1, we have je{l,d2}

4qd(lfd) > ‘A| = logq(4d2) + d(l —d — d)+ > logq(K — 1)

do 1> og Al Sincelog, (4ds) < 2d> andd < dz, we have

= log, =
- 2dyl + dol > logq(K -1
log (K —1
Consider the following general lemma. =>1> %
2

Lemma V.3. Letw C IE‘fI be a subspace of dimensiadh. Let u

1, m,..., 7 C FL be do-dimensional subspaces such that For anyx € (AU{¢})™ andl € {1,2,..., N}, let

for everyi # j, m + m; # 7 + m;. Then, RE(F) = |1f (x(1,2)) : ae(AU{qﬁ})“'} ©)

1> max d V. log, (K — 1) log, (K —1) denote the number of distinct values that the function takes
- 3 ’ 3ds ’ when only the arguments correspondinglt@re varied and

all the others are held fixed accordingxtoAlso, for any(d, 1)

Proof: Denote the complement subspace ofby 7 code, any input vectax € (AU{¢})™ andl C {1,2,..., N},
(tTN7T = ¢, 7+7 = F). Let < by,...,bg, > be et
a basis ofr and < bg,+1,...,b1 > be a basis ofr Hx—Zﬁ ‘
so that together they spa]ﬁfz. Now let < c¢q,...,cq, > i€l
denote the basis for any subspagcg Then eachc; can Lemma V.4. For any target functionf,
be expressed as a linear combination of thés, that is,
¢ = oi:b1 + ...+ oy b1 Thus, 7 + 7; is a subspace Emnlf) =

spanned by< by, ..., ba,, >\, i1bi, ..., Yo @abs > logy (R¥(f) =1) 1og, (RX(f) — 1)
This is equivalent to the subspace spanned bky max max 3 , —2 311
b17 s 7bd1 ’ Zi’:dl-‘,—l aivlbi’ Tt Zith"rl ai’dbi = where R)I(E}()>1

the lastd vectors are a linear combination of vectors7n
Therefore for each subspagg there exists a subspageC 7

such thatr + m; = 7 + m; and7; N ™ = ¢. Then for every
i # j, m # m; sincew + m; # 7+ m;. Further, eachr; has
dimension at mostl,. Note that the dimension &f is | — d;

and each subspacg is a subspace dfl. Since there ard{ 7% ez i b
distinct 7;'s, we have from Lemma V.1 that Z i Z i Z i T Z !

Proof: Consider any/ C {1,2,...,N} and any input
vector x. For anya,b € (AU {oMH if f(x(I,a)) #
f(x(I,b)), then any(d,l) feasible code should satisfy the
following condition.

je{1,...,|I|} iele Je{1,...,|I]} i€le
e = ML g ) + T # Ty + 11 7
1+4- Z qj(l—dl —3) > K. (5) x(I,a) x(I,b)
j=1 Note that for anyl anda € (AU {¢})!], dim (Hiu a)) <
Then, we have d - |I] since it is composed of the union of at mdst d-
I—dy dimensional subspaces. Then, (7) and (6) imply that thest ex
4. Z gU=h=i) > 1 R¥(f) subspaces, each with dimesion at mést|, such that
= B the union of any one of them witl% is unique. Sincd, x
1—dy \2 were arbitrary, the result follows from Lemma V.3. |
=4(1—dy) (7)) > K -1
I d\2 Example V.5.
= log, (4(l —d1)) + ( 1) > log, (K —1). « For the identity target functiory, the above bound gives
. log,, |A
Sincelog, (4(1 — d1)) < 2(I — d1)?, we have Ean(f) > quTH'
3(1—d1)* > log, (K — 1) « For the arithmetic sum target functiofi, we get

log, (K — 1) /
NP S — Enn 710gqN|A‘,

3 )= 3



Comment: Note that when|.A| > N, the bounds in the B. Define the boolean variablé 4 as follows.
above examples are better than the ones presented in mweviou

sections. 1 if Aistrue

AT 0 otherwise.

B. A general scheme for computation Then the functiory can be rewritten as

K N
f(xlaan---axN) = ZH ]l{zgz]}

i=1j=1

We now present a general method to compute functions
under our network model. We will illustrate the method for
boolean functions of the fornfi : (Au{¢})¥ — {0,1}. For
a general function, the output can be considered as a stfingiden using the scheme described in this section, the set cove
bits and the above scheme can be used separately to computetion can be computed using (&, K) code withd - | =
each bit of the output. log, | A| = K. This scheme is in-fact optimal in terms of the

Since f has boolean output, it can be written as smallest possible - | for any feasible code.

s N
f(l'l,l‘g,...,l‘N) = ZHB”

i=1 j=1

VI. CONCLUSIONS

In this paper we investigated function computation in a net-
work where intermediate nodes perform randomized network
coding, through appropriate choice of the subspace codsboo
at the source nodes. Unlike traditional function compatati

at requires intermediate nodes to be aware of the funttion

€ computed, our designs are transparent to the interneediat
node operations. Future work includes finding tighter beund
for general functions as well as designing more efficient
schemes. Another direction of research would be to relax our
assumption that the sink is able to observe the joint spaheof t
Given any inputz;, source; creates a vector; of lengths injected subspaces and allow it to only learn some subspace
such thati-th component isB;;. Each sourcg then sends the of the union.
corresponding vectay; into the network and the sink collects
linear combinations of these vectors. If théh component of
any of the vectors in the union subspace at the sink then
a boolean variabled; is assigned the valug. This implies

where s is some integer such that< s < |A|"; {B;} are
boolean variables such that the value/&f depends only on
x;; and the sum and product represent boolean OR and A
By taking the complement, we have

s N
f(:cl,xg,...,:vN):HZ

i=1j=1

B,;j.
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