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COVERING ALGORITHMS, CONTINUUM PERCOLATION AND 
THE GEOMETRY OF WIRELESS NETWORKS 

BY LORNA BOOTH, JEHOSHUA BRUCK, 
MASSIMO FRANCESCHETTI AND RONALD MEESTER 

University of Utrecht, California Institute of Technology, 
California Institute of Technology and Free University of Amsterdam 

Continuum percolation models in which each point of a two-dimensional 
Poisson point process is the centre of a disc of given (or random) radius r, 
have been extensively studied. In this paper, we consider the generalization in 
which a deterministic algorithm (given the points of the point process) places 
the discs on the plane, in such a way that each disc covers at least one point 
of the point process and that each point is covered by at least one disc. This 
gives a model for wireless communication networks, which was the original 
motivation to study this class of problems. 

We look at the percolation properties of this generalized model, showing 
that an unbounded connected component of discs does not exist, almost 
surely, for small values of the density X of the Poisson point process, for 
any covering algorithm. In general, it turns out not to be true that unbounded 
connected components arise when k is taken sufficiently high. However, 
we identify some large families of covering algorithms, for which such an 
unbounded component does arise for large values of X. 

We show how a simple scaling operation can change the percolation 
properties of the model, leading to the almost sure existence of an unbounded 
connected component for large values of ., for any covering algorithm. 

Finally, we show that a large class of covering algorithms, which arise in 
many practical applications, can get arbitrarily close to achieving a minimal 
density of covering discs. We also construct an algorithm that achieves this 
minimal density. 

1. Introduction and motivation. Geometric covering algorithms have been 
extensively studied in the last 20 years, in the context of computational geome- 
try and combinatorial optimization [see the survey by Agarwal and Sharir (1998), 
Section 7.1]. More recently, distributed versions of these algorithms have been pro- 
posed in the context of wireless network architectures [see Gerla and Tsai (1995)]. 

Communication networks are often modelled using random graphs. In such 
graphs vertices represent communication endpoints and edges represent two-way 
channels. Early work was done by Erdos and Renyi (1959, 1960, 1961a, b), 
but this was not suited to accurately representing networks of short-range radio 
transmitting stations. This motivated Gilbert (1961) to propose an alternative 
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model in which the range of the transmitters is a parameter. In his paper, 
he constructed a random network by considering a two-dimensional Poisson 
point process and joining a pair of points by an edge if discs of radius r 
centered at those two points intersect. He was the first to introduce the concept 
of continuum percolation, identifying a phase transition behavior, that is, the 
existence of a critical value Xc for the density of the Poisson point process, at 
which an unbounded connected graph a.s. forms and the network can provide 
some long distance communication. His results were later extended, from a purely 
mathematical standpoint, by Hall (1985), Menshikov (1986), Roy (1990), Meester 
and Roy (1994) and others, leading to a theory of random coverage processes 
[see the books by Hall (1988) and Meester and Roy (1996)]. In a more applied 
framework, Gupta and Kumar (1998, 2000) and Penrose (1997) recently used a 
similar model to determine connectivity and throughput capacity of a wireless 
network. 

In this paper we make a connection between covering algorithms and continuum 
percolation by considering the generalized model in which a deterministic 
algorithm (given the points of the point process) places the discs on the plane, in 
such a way that each disc covers at least one point of X, and each point is covered 
by at least one disc (see Figure 1 for a visual example). 

In our model, we differentiate between base stations and clients: clients 
communicate between each other by connecting to base stations that forward their 
messages to their destinations (see Figure 2). If a client is within a given distance of 
a base station, it can connect to it and we say that the client is covered by the base 
station. Hence, the network appears as a set of circular cells (base station broadcast 
domains) that cover a set of points (clients). A covering algorithm decides where 
to place the cells, according to the distribution of the clients. The algorithm can 
be a distributed, self-organizing one, in a model where the entire population of 
clients elects "cluster heads" and divides itself into subsets that are covered by the 
cluster heads [see Gerla and Tsai (1995), although in that paper the base stations 
are chosen among the Poisson points] or a more centralized one, in a model where 

Continuum Percolation Covering Algorithm 

FIG. 1. Two different disc coverings of a random point process: a continuum percolation model 
places a disc at each random point; in our generalised model a covering algorithm places (possibly 
fewer) discs to cover all the points, according to a deterministic rule. We are interested in the almost 
sure existence of an unbounded connected component of discs, for a given density of points A. 
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FIG. 2. The wireless backbone: a connected component of discsforms the wireless backbone of the 
network. If a client A wants to communicate to a client B, it connects to the closest base station and 
its message is routed through the backbone in a multi-hop fashion, until it reaches client B. 

the clients are mobile and the base stations are static. In the latter case, the base 
stations could be laid on a fixed grid and the covering algorithm could determine 
the subset of them that need to be turned on, at any given time, to provide coverage 
[see Franceschetti, Cook and Bruck (2001)]. The algorithm would typically try to 
minimize the number of base stations that need to be turned on to cover all the 
clients, or, in the dynamic case, would try to minimize the base station movement 
needed to cover all the clients. 

As in Gilbert's model, we assume a completely wireless network; hence, base 
stations can connect to other base stations only up to a limited distance. We 
assume two base stations to be connected only if the corresponding discs overlap 
(although we will modify this requirement later in the paper). Therefore, if two 
clients are in the same connected component of overlapping discs, they can 
communicate, because they are reached by a connected path of base stations of 
that component. 

In percolation theory one is interested in unbounded connected components. 
In our setting, unbounded connected components are of interest because they 
represent long-range communication. The almost fully connected state of the 
wireless network is also interesting, and any of the proof techniques we use to 
prove percolation will also show that most of the clients fall inside the unbounded 
connected component and are therefore able to communicate, under similar 
conditions. In this case, a few additional "bridge" stations can be added to connect 
isolated components to the unbounded one and achieve the full connectivity of the 
network. 

It may be argued that not allowing transmitters to be further than a certain 
distance from a client is an artificial constraint if we are interested in having long- 
range communication. However, we wish to see when long-range communication 
occurs spontaneously, given that the clients require communication with the base 
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stations and the natural restriction of not placing a base station where it does not 
cover any client. 

We informally summarize our main results next; in Section 2 we introduce 
some notation and definitions; Sections 3 is devoted to existence and nonexistence 
results for unbounded components, for different covering algorithms; Section 4 
considers the effect of varying the base station communication radius; Section 5 
discusses the optimality of covering algorithms; Section 6 contains some open 
problems. 

Our results can be grouped into three categories: (non)existence of percolation 
for different classes of covering algorithms; scaling results; and results concerning 
the optimality of certain algorithms. In the following, we let X be a two- 
dimensional Poisson point process of density A. The points of X represent the 
clients that are covered by base stations. 

In Section 3 we show that, for any algorithm, there is no percolation for 
X sufficiently small (for any algorithm). On the other hand, there are algorithms 
that never percolate, whatever the value of X. Furthermore, we identify different 
families of covering algorithms that do form an unbounded connected component 
a.s. for large X. Finally, we show that this is not generally true for shift invariant 
algorithms (to be defined), by constructing a shift invariant algorithm that never 
percolates. 

In Section 4 we introduce a further extension of our model. We note that 
when we consider overlapping discs as connected components, then we implicitly 
assume, in our model of a wireless network, that the maximum radius of 
communication between two base stations is twice as large as the maximum radius 
of communication between clients and base stations. This observation leads to the 
natural question of what would happen if the ratio between the two radii is different 
from 2. 

Call r the radius of the discs used to cover the points of X, and call R the 
maximum distance sufficient to connect disc centers. We show that if R/r < 1, 
then, for any grid G, there is a covering algorithm that places discs only at the 
vertices of G and a.s. does not form an unbounded connected component, for any 
value of X. If 1 < R/r < 2, then the same holds as long as we use a grid G that is 
dense enough. If R/r = 2, then, for any grid G, any covering algorithm that places 
discs only at the vertices of G forms a.s. an unbounded connected component for 
large values of X, but if R/r > 2, then any algorithm forms a.s. an unbounded 
connected component for large values of X, even if it is not grid-based. 

Note that the latter case is useful in practice, because it states that if base stations 
can communicate at a distance larger than twice the maximum communication 
distance to the clients, an unbounded connected component forms a.s. for large 
values of the density of the clients, regardless of the covering algorithm used to 
build the cellular network. 

Finally, in Section 5 we show (constructively, in Theorem 5.1) that a certain 
class of practical algorithms can achieve densities arbitrarily close to the optimal, 
and we also construct an algorithm optimal in terms of a minimal density of discs. 
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2. Notation and definitions. Let JR2 be the Euclidean plane, let ?2 be the 
a-algebra of Borel sets in IR2 and let t(.) be the Lebesgue measure in IR2. Let 
N be the collection of all counting measures on (R2, 22), which assign finite 
measure to bounded Borel sets and for which the measure of a point is at most 1. 
In this way, N can be identified with the set of all configurations of points in R2, 
without limit points. Let Xf be the a-algebra of N generated by sets of the form 
{v E N: v(A) = k}, for all integers k and bounded Borel sets A. A (planar) point 
process X is defined as a measurable mapping from a probability space (Q, X, P) 
into (N, X). For A E 22, we denote by X(A) the random number of points 
inside A. In this paper, X will always be a Poisson process with density X > 0. 
We sometimes abuse notation and write x E v, for x E IR2 and v E N, to express 
that x is one of the points of v. 

We define a shift operation Tt: R2 -> R2 as a translation in R2 over the vector 
t E R22, such that Tt(x) = t + x for all x E R2. The shift Tt induces in a natural 
way a shift transformation on N, which we also denote by Tt. Let, for all x E R2 
and r > 0, D(x, r) be the disc of radius r centered at x: D(x, r) = {y IR2: 
y - xl < r}. A circle of radius r centered at x is the set {y E IR2: y - xl = r}. 

The boundary of a set A will be denoted by aA. 
We call two discs Di, Dj adjacent if Di n Dj / 0. We write Di > Dj if there 

exists a sequence Di,, Di2,..., Dik of discs such that Dil = Di, Dik = Dj and 
Di, is adjacent to Dil+l for 1 < I < k. A (connected) component or cluster is a 
set { Di: i E J of discs which is maximal with the property that Di - Dj for all 
i, j E J. We identify a component with the set of centers of the discs in it. 

We next formally define a covering algorithm: a covering algorithm A with 
discs of radius r is a measurable mapping A : N -* N with the following 
properties: 

1. for all x E A(v) there exists y E v such that y E D(x, r); 
2. for all y E v there exists x e A(v) such that y E D(x, r). 

We define the occupied region C of A(v) as the union UJxA(v) D(x, r). 
In this paper, we examine different classes of covering algorithms, which we 

define as follows: 

GRID ALGORITHMS. Let G c 1R2 be the set of all vertices of a two- 
dimensional lattice. A grid algorithm A constrains the covering discs to be 
centered at the vertices of G. That is, x E A(v) implies x E G. Naturally we 
require G to be such that every point can be covered by a disc centered at some 
vertex of G. 

FLAT ALGORITHMS. A flat algorithm A has the property that its restriction 
to any box of size n x n contains at most k(n) discs, for some k(n) < oo. Note that 
k(n) < oo, for some n, immediately implies that k(m) < oo, for any m, as we can 
cover an m x m square by a finite number of n x n squares. 
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FINITE HORIZON ALGORITHMS. Let Bn(x) be the box of size n x n centered 
at x, and, for all v E N, let vIBn(x) denote the restriction of v to Bn(x). In 
other words, VIBn(x) can be identified with the set of points {v n Bn(x)}. We say 
that a covering algorithm A has finite horizon if there exists a constant h > 0 
(the horizon), so that whenever VIBn+2h(x) = vl Bn+2h (), we have A(v)IBn(x) = 
A (V) I Bn (x), for all n and x. In words, this means that changing v outside Bn+2h (x) 
does not change the covering inside Bn (x). 

SHIFT INVARIANT ALGORITHMS. A shift invariant algorithm A is defined by 
the property that Tt (dA(v)) = A(Tt (v)), for all t. 

n-SQUARE ALGORITHMS. An n-square algorithm is obtained as follows. 
Partition the plane into boxes of size n x n. For each such box Bn, the covering of 
the points inside Bn should use the minimal number of discs possible. 

Suppose now that we want to cover the points of X by the covering algorithm A; 
that is, we consider the measurable map A o X: f -- N. This Boolean model is 
denoted by (X, A) = (X, i, r, A), where X is the density of X, and r is the radius 
of the covering discs. The law of this process is denoted by PX,r. The standard 
Poisson Boolean model that places a disc of radius r, centered at each point of X, 
is obtained when we take A to be the identity and is denoted by (X, i, r). In 
this model there exists Xc(r) such that for X < Ac(r) we have no infinite cluster 
a.s., while for X > Xc(r) there is an infinite cluster with probability 1. We often 
denote .c(l) by Xc and scaling implies that Xc(r) = .c(l)/r2 [see Meester and 
Roy (1996) for more details]. 

Next, we define the density of (X, A). Let N(X,A)(n) be the (random) number 
of discs centered inside the box Bn(O). The density of (X, A) is given by 
limn-o N(x,^) (n)/n2, whenever this limit exists a.s. and is an a.s. constant. 

Finally, we introduce one more piece of terminology. If (X, A) contains an 
unbounded component of discs with positive probability, we say that (X, A) 
percolates. 

3. Percolation. In this long section we think of r as being fixed, while 
X varies. Accordingly, we sometimes write Px = P ,r. We also use P to mean P, 1. 
The expectation under P we denote by E. 

Our first result deals with the lack of percolation for small values of X. 

THEOREM 3.1. For any covering algorithm A, there exists a Xo(r) > 0 such 
that, for all 0 < A < Xo, (X, ., r, A) does not percolate. 

PROOF. Assume that, with positive probability, there is an unbounded 
connected component of covering discs for (X, X, r, A). Then, with positive 
probability, there is an unbounded connected component in the Poisson Boolean 
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model (X, X, 2r). That is because two intersecting covering discs in (X, A, r, A) 
cover points that are at a distance of at most 4r to each other; and the Poisson 
Boolean model (X, X, 2r) places discs of radius 2r at each of the covered points. 
We then choose Ao = Ac/(2r)2, so that (X, A, 2r) does not form an unbounded 
connected component a.s. for A < Ao. E 

A symmetric result to Theorem 3.1, that is, percolation for large values of A, 
depends on the type of covering algorithm used: 

PROPOSITION 3.2. There exists a covering algorithm A such that, for all A, 
(X, X, r, A) does not percolate. 

PROOF. The proof is constructive. Draw circles of radii {3kr, k e N} around 
the origin and notice that a.s. no Poisson point falls on any of these circles. Then 
cover the Poisson points with discs of radius r, without intersecting these circles. 
Notice that the circles divide the plane into finite annuli and, since each cluster of 
discs resides in at most one of these finite annuli, each cluster must be bounded, 
whatever the value of A. D 

We next look at families of algorithms that do percolate for large values of A, 
starting with flat algorithms. Recall that each such algorithm A has the property 
that the restriction of A to any box of size n x n contains at most k = k(n) discs, for 
any value of A. Note that this really is a weak requirement, since we can completely 
cover the box using at most a F(n/r)12 discs, for some a < 1. Any "sensible" 
algorithm should therefore be flat. 

THEOREM 3.3. Let A be a flat covering algorithm. Then there exists A < oo 
so that (X, A, r, A) percolatesfor all A > A1. 

At first sight, the statement of the theorem is counterintuitive, since we claim 
that we force percolation by restricting the number of discs. The point is that by 
restricting the number of discs (independently of A), the requirement of covering 
all points with this restricted number of discs makes percolation unavoidable. 

The following theorems are two consequences of Theorem 3.3 and its proof that 
are important in practice. 

THEOREM 3.4. For any grid covering algorithm A, there exists a A < oo 
such that (X, A, r, A) percolatesfor all X > Ai. 

This theorem can be proved by application of Theorem 3.3, as all grid 
algorithms are flat. For an elegant proof offering more insight into the structure 
of grid algorithms see Booth (2002) and Booth, Bruck, Franceschetti and 
Meester (2002). 
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THEOREM 3.5. For any n > 0 there exists a Xn < 00 such that, for any 
n-square algorithm cAn, (X, X, r, An) percolatesfor all A > .n. 

Since an n-square algorithm is flat, it follows from Theorem 3.3 that, for each 
n-square algorithm, we can find such a X. The fact that this .n depends only on n 
and not on the particular n-square algorithm we choose follows from the proof 
of this theorem, by noting that Ai in the statement of the theorem only depends 
on k(n). 

Another version of Theorem 3.3 requires an upper bound on the density of discs, 
the shift invariance of the algorithm under a pair of linearly independent shifts and 
the algorithm to be finite horizon. 

THEOREM 3.6. Let A be a finite horizon covering algorithm such that a 
constant 3 < oo exists such that 

number of discs in Bn 
lim sup < 8 a.s. 

n--> oo n 

and which is stationary under a pair of linearly independent shifts. Then there 
exists A . < oo so that (X, i, r, 0A) percolates for all X > 1i. 

Johan Segers (personal communication) has pointed out that although finite 
horizon algorithms of bounded density which are stationary under any pair of line- 
arly independent vectors must percolate, for a sufficiently high density of points, 
there exist finite horizon covering algorithms of bounded density which are sta- 
tionary under shifts of one vector and do not percolate for any .. 

Before we prove Theorems 3.3 and 3.6, we first state and prove a preliminary 
geometric lemma. 

LEMMA 3.7. Consider a collection of discs of radius r, with the property 
that at most k(n) < oo discs intersect any box of size n x n. Then there exists 
an e = e(n, r) > 0 with the following property: if either there are at least two 
clusters that intersect the boundaries of both Bn+r(x) and Bn+2r(x) or there is a 
cluster wholly contained in Bn+2r(x), then there is a circle of radius e, contained 
in Bn+3r(x), that is not intersected by any disc. 

PROOF. We write Bn = Bn (x). All discs that intersect Bn+3r must be centered 
inside Bn+5r. Therefore, at most k = k(n + 5r) discs intersect Bn+3r. Let C be a 
component that intersects the boundaries of both Bn+r and Bn+2r. The number of 
discs in C that intersect Bn+2r is denoted by 1. Note that I < k. 

Consider a section AB of the perimeter of C, from the boundary of Bn+r to the 
boundary of Bn+2r, which does not intersect either of these boundaries except at 
its ends (see Figure 3). This section has length at least r/2 and consists of parts of 
the boundaries of at most 1 discs, each of which appears only once. This latter fact 
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A 

- B 
r 
2 

FIG. 3. Subdividing the arc: an edge AB of a component C connecting the two boundaries of Bn+r 
and Bn+2r, has length at least r/2. This edge contains an arc a of length at least r/21. Arc a is 
divided up into k sections, and by one of these we can place a small disc of radius e that is not 
contained in any cluster 

follows from the observation that, since the distance between the boundaries of the 
two boxes is only r/2, any disc that contributes to an arc in AB must overlap the 
boundary of at least one box. Moreover, note that were AB to contain two disjoint 
arcs from the same disc, then any disc overlapping that disc, in order to make these 
arcs disjoint, must overlap the boundary of the box not overlapped by the first disc. 
Therefore these arcs would be in disjoint sections of aC n Bn+2r/(Bn+r U aBn+2r). 
It follows that at least one arc in AB is of length at least r/21. Call this arc a. 

Note that there are at most k - 1 discs intersecting Bn+3r, if we do not count 
the one that has a as a part of its boundary, and none of them intersect a, except 
at its endpoints. If we divide a into k arcs of equal size, then each of these discs 
will be nearest to one of these smaller arcs-assign this arc to this disc. One of 
the smaller arcs (of size at least r/2kl ) will, however, have no disc assigned to 
it. This means that the space left by discs tangent to the ends of this smaller arc 
cannot be covered, and we can choose ? so small that a disc of radius E fits into 
this space (see Figure 3). The value of e that we have to choose only depends upon 
r, n and k(n). 

The same argument applies to a component wholly contained in Bn+2r, by 
considering its perimeter rather than its boundary between Bn+r and Bn+2r. D 

PROOF OF THEOREM 3.3. Let t, u E Z, and denote the box of size n x n 
centered at (tn, un) by Bn(tn, un), as before. Let e be chosen as in Lemma 3.7. 
We say that the vertex (t, u) is a neighbor of (t', u') if the boxes Bn(tn, un) and 
Bn(t'n, u'n) share an edge or corer. We call a vertex (t, u) good if all discs 
of radius E contained in Bn+3r(tn, un) contain at least one point of the Poisson 
process. Denote the event that (t, u) is good by G(t, u). It is clear that, when 
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.......................................................................................................... 

n 

i............... ......... . ................... 

n+r.................. 

n+2r 

FIG. 4. A good square: there is only one component of discs (represented by the dashed line) that 
intersects both Bn+2r and Bn+r. This component must reach to within 2e of all edges of Bn+r, and 
will therefore intersect a component of an adjacent good square. 

X - oo, the probability of G(t, u) converges to 1. It is also clear that G(t, u) and 
G(t', u') are independent whenever max{It - t'l, lu - u'l} > r3, for n larger 
than 2r. Hence, the configuration of good sites is formed through a discrete, 
finite-range dependent percolation process, and it follows then from Durrett and 
Griffeath (1983) that, for X high enough, the good vertices percolate, that is, 
contain an infinite component of good squares with probability 1. What does this 
mean for our covering? Consider a good square Bn. By Lemma 3.7 any component 
cannot be wholly contained in Bn+2r; therefore, a component that covers points 
inside Bn+2r must also intersect the boundary of Bn+2r. Also by Lemma 3.7, 
there can be only one component that intersects the boundaries of both Bn+2r 
and Bn+r. For n larger than 2E such a component exists and must reach to within 
2E of all edges of Bn+r, as, by the definition of a good square, there is no disc 
of radius E inside Bn+r without any points of the Poisson process inside it (see 
Figure 4). 

Thus, the components associated with adjacent good squares must overlap, and 
we must have an infinite component of discs with probability 1. D 

We thank Johan Segers and the referee for the remark that this proof does not 
depend upon the algorithm being finite horizon. 

PROOF OF THEOREM 3.6. The proof in this case is a little more complicated, 
but uses the same idea as that of Theorem 3.3. Without loss of generality assume 
that the algorithm be stationary under the shifts T(m,o) and T(o,m), for some m. Let 
h be the horizon of the algorithm, and assume m > max(l, h + 5r), again without 
loss of generality. Choose y > 0 sufficiently small so that 1 - y is strictly above 
the critical point for site percolation on the lattice {(tm, tu): t, u E Z} with edges 
between neighboring sites. Take n, a multiple of m, so large that the probability that 
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Bn+5r is intersected by more than (8 + 1)(n + 5r)2 discs is less than y, uniformly 
in A. We then use (8 + l)(n + 5r)2 as our k in the lemma and find an e such 
that, if we have at most (8 + 1)(n + 5r)2 discs intersecting Bn+5r in the way 
described in the lemma, then we must have a circle of radius e empty of Poisson 
points. 

In the proof of the theorem we then call Bn good if Bn+3r has both no disc of 
radius E empty of Poisson points in it and Bn+5r contains at most (8 + 1)(n + 5r)2 
points. Other boxes are called good analogously. If X is high enough, these boxes 
percolate, and we again have an infinite component of discs. O 

We have seen that both finite horizon, shift invariant algorithms under a bounded 
density condition and grid algorithms necessarily percolate for high enough 3. It 
is natural to ask whether this always holds for shift invariant algorithms. It turns 
out that, for these algorithms, in general large values of the density X of the points 
do not guarantee the a.s. existence of an unbounded connected component. This 
is shown by describing a shift invariant covering algorithm that does not form an 
unbounded connected component for all .: 

THEOREM 3.8. There exists a shift invariant covering algorithm A of all the 
points of X by discs of radius r such that, for all 3., (X, ., r, A) does not percolate. 

The proof of Theorem 3.8 is constructive and rather technical, so we will 
sketch the algorithm, but omit the proof. For full details see Booth (2002) and 
Franceschetti (2002). The covering we describe can be seen as a shift-invariant 
variant of that in Theorem 3.2 and will also have a density of disc centers equal to 
the density of points. 

SKETCH OF PROOF OF THEOREM 3.8. Without loss of generality, consider 
using covering discs of radius r = 1. As the covering should be a deterministic 
function of the points, we must first calculate X in the realization of the point 
configuration. We do this by setting 

number of points in Bn (0) X- lim 
n--oo n2 

if this limit exists and is constant, which happens with probability 1, and otherwise 
we take X = 1. 

We define a potential-point to be a Poisson point with at least one other point 
in the half-disc of radius ? to the right of it, and no points in the disc of radius 1 
centered at it, except in the aforementioned half-disc. We then call a potential-point 
an m-point, for integer m, if it has its nearest neighboring point between bm and 
bm+l away, where bl = ?, b2, b3, ... is a decreasing sequence of positive numbers, 
such that the density of m-points is exactly 1 8-2, for some small number E > 0. 
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FIG. 5. Sausages: by sliding a disc of radius 2 along the boundary of some cluster, we trace a kind 

of sausage shape. 

How small e will be required to be depends upon .. Around each m-point we place 
a circle of radius 18m. 

A theorem of Meester and Roy (1994) allows us to show that every bounded 

region of the plane is a.s. wholly contained in some circle. Lots more work, based 

upon an idea of Meester and Roy (1996) for fractal continuum percolation, shows 
us that each cluster of overlapping circles is finite, and moreover the maximal 
connected component of points strictly within distance 9 of any circle is also 
finite. 

We construct smooth curves based upon the finite circle clusters. Consider some 
maximal set of circles such that, if we take the locus of points at a maximal distance 
of 4 from the points in the circles, then this forms a connected set, and run a disc of 
radius 2 around the outside of this set (see Figure 5). The disc traces out a kind of 
finite sausage shape around the clusters. 

We take the inside edge of this sausage as our curve and note that a covering 
disc (of radius 1) can get arbitrarily close to any point of it without touching it. We 
construct these smooth curves for each set of sufficiently close clusters, noting that 
they surround every region, are always finite and never come within distance 8 of 
each other. 

We finally cover our Poisson points as follows: 
(a) If a point is at a distance more than 2 from every smooth curve, then we 

center a covering disc at the point. 
(b) If a point is within distance 2 of a smooth curve, then we place a disc 

so that its perimeter covers the point, and so that the center of the disc is at the 
maximum distance away from the smooth curve. If there are a number of such 
possible positions, we choose the leftmost. 

It immediately follows that, for any given value of X, a.s. there is no percolation. 

4. Scaling. In this section we consider an extension that is useful to model 
the transmission power in wireless communication networks. We look at the 
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R<2 >2 
r r 

FIG. 6. Scaling: points are covered by solid line discs of radius r. Discs centers are considered 
connected if their distance is at most R. 

percolation properties of our model, for different values of the connectivity range 
of the base stations and of the clients. 

Let r be the clients' connectivity range and let R be the base stations' 

connectivity range. It follows that discs of radius r are used to cover the points 
of X and two disc centers are considered connected, if their distance is less than or 

equal to R (see Figure 6). We are interested in the a.s. existence of an unbounded 
connected component of disc centers, for large values of the density . of the 
Poisson point process. Our result is the following. 

THEOREM 4.1 (The scaling theorem). Let G C R2 be the set of all vertices 

of a square lattice in which the distance between two neighboring lattice vertices 
is 8. Call two disc centers connected if their distance is at most R. We have the 

following cases. 
Case 1. If R < 1, then,for any 8 > O, there exists a grid covering algorithm A 

thatplaces discs only at the vertices of G such that, for all k, (X, 3., r, A) does not 

percolate. 
Case 2. If 1 < R < 2, then there exists a 8 > O, depending on R, such that there 

exists a grid covering algorithm A that places discs only at the vertices of G and, 
for all i, (X, ., r, A) does not percolate. 

Case 3. If R = 2, then, for any 3 > O,for any grid covering algorithm A, there 
exists a X1 < oo such that, for all . > Xi, (X, X, r, A) percolates. 

Case 4. If R > 2, then, for any covering algorithm A, there exists a 1 < oo 
such that, for all X > kl, (X, X, r, A) percolates. 

Note that Case 4 of the theorem states that, in a wireless network in which 
base stations can communicate at a distance larger than twice the maximum 
communication distance to the clients, an unbounded connected component forms 
a.s. for large values of the density of the clients, regardless of the covering 
algorithm used to build the cellular network. 
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PROOF OF THEOREM 4.1. 
Case 1. We can restrict our attention to R = 1. That is because if a grid covering 

algorithm does not form an unbounded connected component when R = 1, then it 
does not form such a component when R < 1 either. 

Note that, for R = 1, two disc centers are considered connected if and only if 
the corresponding discs of radius r cover each other's centers. Moreover, in order 
to be able to cover all points on the plane by using only grid discs of radius r, 
the grid spacing 8 must be at most V/r. We now consider all values of the grid 
spacing 6 < /V2r, subdivided into intervals. 

For r < 6 < V/fr, any grid covering algorithm places discs on the plane that do 
not touch each other's centers. 

For - < 3 < r, consider the tiling of the plane depicted in the left part of 

Figure 7. Discs of this tiling do not cover each other's centers; therefore, any grid 
covering algorithm that covers all the points of X using only the grid discs depicted 
in the left part of Figure 7 does not form an unbounded connected component, a.s., 
for any value of A. 

For r/2 < 8 < , consider the tiling depicted in the right part of Figure 7. 
Discs of this tiling do not cover each other's centers; therefore, any grid covering 
algorithm that covers all the points of X using only the grid discs depicted in the 
right part of Figure 7 does not form an unbounded connected component, a.s., for 
any value of A. 

For the remaining values of 6, we can use the same tiling of the two cases 
depicted in Figure 7, scaled by the appropriate factor. 

Case 2. In this case, two disc centers are considered connected if and only if 
the corresponding discs of radius r overlap by a region of measure at least e > 0, 
where the value of E depends on the ratio R. r 

6=r 26=r 

FIG. 7. Theorem 4.1, Case 1: two tilings of the plane by discs centered on a grid that do not cover 
each other's centers. 
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FIG. 8. Theorem 4.1, Case 2: a Poisson point P is covered by a disc centered at point 0, which is 
within r from P. The covering disc can be moved to a nearby grid vertex, that is inside the solid disc 
and is within V/28 from 0, and still covers point P. 

We follow a construction similar to that used to prove Proposition 3.4. Draw 
circles of radii {3kr, k E N} around the origin, and notice that a.s. no Poisson 
point falls on any of these circles. Then cover the Poisson points, each with a 
disc of radius r, without intersecting these circles. Notice that the circles divide 
the plane into finite annuli, whose boundaries are not covered by discs. We now 
approximate this covering using a grid covering. Consider a square grid G and 
move each disc of the above covering to the nearest vertex of G that still allows it 
to cover its corresponding Poisson point. Note that each disc needs to be translated 
by at most V/2S. That is because a Poisson point is covered by a disc centered 
within r from it, and there is always a grid vertex, within radius r from the Poisson 
point, that is also within V'2 from this center (see Figure 8). 

By this translation, some discs may intersect the boundaries of the annuli that 
were previously untouched. We then take the grid size 8 so small that any two discs 
that intersect these boundaries do not overlap by an area of measure greater than 
or equal to E and are therefore not connected. It immediately follows that, for any 
given value of the density i, a.s. there is not any unbounded connected component 
for this covering. 

Case 3. This case is proven by Theorem 3.4. 
Case 4. In this case, two disc centers are considered connected if and only if 

they are at a distance of at most R (see right side of Figure 6). In other words 
we are interested in the percolation of large discs of radius R/2 around the disc 
centers. A small disc of radius E = R/2 - r > 0 centered at a point of the Poisson 

process must be contained in the large disc of radius R/2 around the centre of the 
disc covering that point. See Figure 9. 

Therefore if these small discs percolate, as they will when X > A(e), the large 
discs must also percolate. l 
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FIG. 9. Case 4: a small discs of radius e = R/2 - r around a point of X must lie inside the disc of 
radius R/2 around the centre of the covering disc. 

5. Optimal algorithms. In this section we explore the notion of optimal 
algorithms, that is, those which use as few discs as possible and show that n-square 
algorithms are asymptotically optimal. The work in this section is philosophically 
close to that in Yukich (1998). 

Fix the density of points, X and r, and extend the definition of the density of a 
covering A to be 

number of discs centered in Bn 
83-= lim 

n-oo n2 

if this exists and is a constant a.s., and oo otherwise. We then define the optimal 
density to be 

8opt = inf8A, 

where the infimum runs over all covering algorithms. An optimal algorithm AoPt, 

is one for which, a.s., 3?pt = -A-opt. We would not expect such an algorithm to have 
a finite horizon. 

First we show that n-square algorithms can get as close as we like to the optimal 
density. Define on to be the density of discs under an n-square algorithm. By 
ergodicity Sn < oc exists. Notice that An does not depend upon the particular 
n-square algorithm we choose. 

THEOREM 5.1. Given e > O, there exists n, such that 8ne < 8?pt + 8, and 
hence 8opt = infn Sn. 

PROOF. We prove this theorem by contradiction, so suppose that we can find 
an e such that there is no n-square covering with density between 8opt and 8?pt + ?. 
We can find another covering, A say, with density 38 E [8opt, 8Opt + 8/4], by the 
definition of 3pt. 
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Choose y > 0 such that (1 - y)(SOpt + e/2) + y(l + e/2)/r2 < 8pt + e. Note 
that the number of discs necessary to cover an n-square is at most [n/r1 2. 

As 
number of discs centered in Bn 

8=- lim a.s., 
n--- noo n2 

we can choose n, > 1 sufficiently large that (a) the number of discs centered 
in Ban is less than n2(?t + s/2) with probability larger than 1 - y, and 

(b) [n/rl2(1/n)2 (1 + E/2)/r2. 
Given a finite set of points there are a finite number of distinct possible 

coverings of those points, where we call two coverings distinct if there exist a set 
of points covered by one disc in one of the coverings but covered by two or more 
in the other. Coverings that are not distinct are equivalent. We will occasionally 
work with the equivalence classes of theses coverings. 

We now define a covering of the box Bne which is based upon A but is 
independent of the points outside Bne. Given a point configuration n in BnE there 
is a finite set of equivalent classes of coverings of these points. Let S, be the subset 
of equivalence classes which occur with positive probability if we use A to cover 
r U X IBC, where XI'B is a Poisson process on BC independent of n and X. 

In each equivalence class all coverings use the same number of discs so we can 
choose an equivalence class from S2r in which the number of discs used is minimal, 
according to some deterministic rule. Choose a covering from this class, according 
to some other deterministic rule. This is the covering we use to cover Bne. Note that 
this is independent of the actual point process outside Bn. The expected number 
of discs required to cover the points in Bn, under this algorithm can be at most that 
under A. 

We now divide the plane into squares of size n8 and cover each square 
independently using the same algorithm in each as we use on BnE. For those 
squares for which this requires at most n2(S?Pt + 8/2) discs, we use this covering. 
In the other squares we cover optimally, which means that we have a density of at 
most (1 + e/2)/r2 on these squares. 

We have created an algorithm that covers each square of size n8 independently, 
and which therefore cannot have a density less than 8,6. However, the density of 
the covering is at most (1 - y)(?OPt + e/2) + y(l + e/2)/r2 < 68pt + ?, and we 
have a contradiction. O 

Next, we strengthen the previous proposition. 

THEOREM 5.2. Let Sn be the density of discs under an n-square algorithm. 
Then limn,oo n = 8opt. 

PROOF. We know that 8opt = infn 8n and that Snn2 is the expected number of 
discs needed to cover an n-square. For the sake of contradiction suppose that there 
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FIG. 10. Division of the plane into squares of increasing size. 

exist e > 0 and a sequence tl, t2, ... ., limi ti = oo, such that 6ti > 8opt + e for all i. 
However, we can choose a so that 8a < 8opt + 8/3. We can also choose i so large 
that 

_a_ ti 3 

The reason we need this will become clear shortly. 
We cover the square Bti as follows. We first divide as much of the square as 

possible into squares of size a. Each of these we cover optimally. We have an area 
of (t2 - a2 L-J2) left, and each of the points in this area we cover with one disc. 
This gives us a covering with expected density 

ti 2()2 ( ti 2() E 8 

_ ti ti 3<Pt-~ 3 

However, the minimal expected density for any algorithm covering the box Bti, 
bti > sopt + 8, SO we have a contradiction. [ 

Note that it is still not clear a priori that an optimal algorithm should exist. The 
existence of an optimal density, defined as the infimum over all attainable densities, 
does not have to be attainable itself. However, we have the following proposition: 

PROPOSITION 5.3. There exists an optimal algorithm. 

PROOF. Divide the plane into squares of increasing size, as in Figure 10. 
Cover the points in each of the squares in some optimal way. This gives a covering 
of the plane and we claim that it is optimal. To see this choose some E > 0 and 
notice that by Theorem 5.2 we can find n = 2- so large that 8n < 8?pt + 8. The 
fraction of the plane covered by squares of side length smaller than n is 0, so our 
algorithm has density at most 8?pt + E. However, E was arbitrary, and therefore our 
algorithm must be optimal. D 
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6. Open problems. Now we mention a number of open problems: 

1. For which classes of algorithms does there exist a critical density? By this we 
mean a critical value Xc, such that percolation occurs for X > Xc and does not 
occur for X < c. 

2. For which classes of algorithms is the infinite cluster unique? In other words, 
when do we have either 0 or 1 infinite cluster, a.s.? 

3. We have shown in Theorem 3.6 that if we have an algorithm with a finite 
horizon, which is shift invariant under two linearly independent shifts and has a 
bounded density of discs, then we must have percolation for X high enough. We 
have also shown in Theorem 3.8 that we can have a completely shift invariant 
covering algorithm with an unbounded density of discs and no finite horizon 
that does not percolate, even for high values of X. Do we have percolation for 
X high enough for a finite horizon algorithm invariant under a pair of shifts, with 
an unbounded density of discs? Do we necessarily have percolation for X high 
enough if we have a bounded density of discs and shift invariance but no finite 
horizon? 
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