251 research outputs found
A Model for Predicting Productivity in Subgrade Preparation of Forest Roads by Excavator
The effect of terrain factors on productivity in subgrade preparation by excavator was studied. The data, collected in a follow-up time study of 57 road sections, was analyzed using multiple linear regression. A prediction model that has soil moisture class and boulder frequency as independent variables was derived. The results also show that productivity varies considerably among operators. It is also apparent that the effect of the terrain is partly levelled out as the quality requirements for the performance of the subgrade are normally adjusted to the terrain conditions. It is suggested that, within a certain region, a fairly simple model can be sufficient for practical use in road network planning
Long-term coastal openness variation and its impact on sediment grain-size distribution:a case study from the Baltic Sea
We analysed the long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjordlike inlet in the southwestern Baltic Sea, and explored potential drivers of the recorded changes in the sediment grain-size data. Over the last 5.4 thousand years (ky) in the study region, the relative sea level decreased 17 m, which was caused by isostatic land uplift. As a consequence, Gåsfjärden was transformed from an open coastal setting to a semi-closed inlet surrounded by numerous small islands on the seaward side. To quantitatively estimate the morphological changes in Gåsfjärden over the investigated time period and to further link the changes to the grain-size distribution data, a digital elevation model (DEM)-based openness index was calculated. The largest values of the openness indices were found between 5.4 and 4.4 cal ka BP, which indicates relatively high bottom water energy. During the same period, the highest sand content (∼0.4 %) and silt / clay ratio (∼0.3) in the sediment sequence were also recorded. After 4.4 cal ka BP, the average sand content was halved to ∼0.2% and the silt / clay ratio showed a significant decreasing trend over the last 4 ky. These changes were found to be associated with the gradual embayment of Gåsfjärden, as represented by the openness indices. The silt / clay ratios exhibited a delayed and relatively slower change compared with the sand content, which indicates different grain-size sediment responses to the changes in hydrodynamic energy. Our DEM-based coastal openness indices have proved to be a useful tool for interpreting the temporal dynamics of sedimentary grain size
Corrigendum to "A culture-based calibration of benthic foraminiferal paleotemperature proxies: δ18O and Mg/Ca results" published in Biogeosciences, 7, 1335–1347, 2010
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 8 (2011): 1521, doi:10.5194/bg-8-1521-2011
A culture-based calibration of benthic foraminiferal paleotemperature proxies : δ18O and Mg/Ca results
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1335-1347, doi:10.5194/bg-7-1335-2010Benthic foraminifera were cultured for five months at four temperatures (4, 7, 14 and 21 °C) to establish the temperature dependence of foraminiferal calcite δ18O and Mg/Ca. Two Bulimina species (B. aculeata and B. marginata) were most successful in terms of calcification, adding chambers at all four temperatures and reproducing at 7 and 14 °C. Foraminiferal δ18O values displayed ontogenetic variations, with lower values in younger individuals. The δ18O values of adult specimens decreased with increasing temperature in all but the 4 °C treatment, exhibiting a relationship consistent with previous δ18O paleotemperature calibration studies. Foraminiferal Mg/Ca values, determined by laser ablation inductively coupled plasma mass spectrometry, were broadly consistent with previous Mg/Ca calibration studies, but extremely high values in the 4 °C treatment and higher than predicted values at two of the other three temperatures make it challenging to interpret these results.Funding
was provided by US NSF OCE-0647899 to DCM and JMB, and
by the Swedish Research Council (grant no 621-2005-4265),
the Lamm Foundation, and the Engkvist Foundation to HLF. A
Fulbright fellowship to HLF together with traveling grants from
G¨oteborg University, the Crafoord Foundation, and the Royal
Physiographic Society in Lund enabled HLF’s Postdoc stay and
subsequent visits to WHOI
Drought recorded by Ba/Ca in coastal benthic foraminifera
Increasing occurrences of extreme weather events, such as the 2018 drought over northern Europe, are a concerning issue under global climate change. High-resolution archives of natural hydroclimate proxies, such as rapidly accumulating sediments containing biogenic carbonates, offer the potential to investigate the frequency and mechanisms of such events in the past. Droughts alter the barium (Ba) concentration of near-continent seawater through the reduction in Ba input from terrestrial runoff, which in turn may be recorded as changes in the chemical composition (Ba/Ca) of foraminiferal calcium carbonates accumulating in sediments. However, so far the use of Ba/Ca as a discharge indicator has been restricted to planktonic foraminifera, despite the high relative abundance of benthic species in coastal, shallow-water sites. Moreover, benthic foraminiferal Ba/Ca has mainly been used in openocean records as a proxy for paleo-productivity. Here we report on a new geochemical data set measured from living (CTG-labeled) benthic foraminiferal species to investigate the capability of benthic Ba/Ca to record changes in river runoff over a gradient of contrasting hydroclimatic conditions. Individual foraminifera (Bulimina marginata, Non-ionellina labradorica) were analyzed by laser-ablation ICP-MS over a seasonal and spatial gradient within Gullmar Fjord, Swedish west coast, during 2018-2019. The results are compared to an extensive meteorological and hydrological data set, as well as sediment and pore-water geochemistry. Benthic foraminiferal Ba/Ca correlates significantly to riverine runoff; however, the signals contain both spatial trends with distance to Ba source and species-specific influences such as micro-habitat preferences. We deduce that shallow-infaunal foraminifera are especially suitable as proxy for terrestrial Ba input and discuss the potential influence of water-column and pore-water Ba cycling. While distance to Ba source, water depth, pore-water geochemistry, and species-specific effects need to be considered in interpreting the data, our results demonstrate confidence in the use of Ba/Ca of benthic foraminifera from near-continent records as a proxy for past riverine discharge and to identify periods of drought.Peer reviewe
Technical Note : Towards resolving in situ, centimeter-scale location and timing of biomineralization in calcareous meiobenthos – the calcein–osmotic pump method
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 5515-5522, doi:10.5194/bg-12-5515-2015.Insights into oceanographic environmental conditions such as paleoproductivity, deep-water temperatures, salinity, ice volumes, and nutrient cycling have all been obtained from geochemical analyses of biomineralized carbonate of marine organisms. However, we cannot fully understand geochemical proxy incorporation and the fidelity of such in species until we better understand fundamental aspects of their ecology such as where and when these (micro)organisms calcify. Here, we present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous meiofauna calcify in situ. Method development initially involved juvenile quahogs (Mercenaria mercenaria); subsequent method refinement involved a neritic benthic foraminiferal community. Future applications of this method will allow determining the in situ growth rate in calcareous organisms and provide insights about microhabitats where paleoceanographically relevant benthic foraminifera actually calcify.This research was funded by WHOI’s
Ocean Life Institute, WHOI’s Ocean and Climate Change Institute,
by a Gori Fellowship (to F. Mezzo), The Investment in Science
Fund at WHOI (to J. M. Bernhard) and the Robert W. Morse Chair
for Excellence in Oceanography (to J. M. Bernhard). Ship time was
provided by US NSF grant OCE-1219948 to J. M. Bernhard
Tracing winter temperatures over the last two millennia using a north-east Atlantic coastal record
We present 2500 years of reconstructed bottom water temperatures (BWT) using
a fjord sediment archive from the north-east Atlantic region. The BWT
represent winter conditions due to the fjord hydrography and the associated
timing and frequency of bottom water renewals. The study is based on a ca.
8 m long sediment core from Gullmar Fjord (Sweden), which was dated by
210Pb and AMS 14C and analysed for stable oxygen isotopes
(δ18O) measured on shallow infaunal benthic foraminiferal species
Cassidulina laevigata d'Orbigny 1826. The BWT, calculated using the
palaeotemperature equation from McCorkle et al. (1997), range between 2.7 and
7.8 °C and are within the annual temperature variability that has
been instrumentally recorded in the deep fjord basin since the 1890s. The
record demonstrates a warming during the Roman Warm Period ( ∼ 350 BCE–450 CE), variable BWT during the Dark Ages ( ∼ 450–850 CE),
positive BWT anomalies during the Viking Age/Medieval Climate Anomaly ( ∼ 850–1350 CE) and a long-term cooling with distinct multidecadal
variability during the Little Ice Age ( ∼ 1350–1850 CE). The fjord BWT
record also picks up the contemporary warming of the 20th century (presented
here until 1996), which does not stand out in the 2500-year perspective and
is of the same magnitude as the Roman Warm Period and the Medieval Climate
Anomaly.</p
Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years
Coastal environments have experienced large ecological changes as a result of human activities over the last 100-200 years. To understand the severity and potential consequences of such changes, paleoenvironmental records provide important contextual information. The Baltic Sea coastal zone is naturally a vulnerable system and subject to significant human-induced impacts. To put the recent environmental degradation in the Baltic coastal zone into a long-term perspective, and to assess the natural and anthropogenic drivers of environmental change, we present sedimentary records covering the last 1000 years obtained from a coastal inlet (Gasfjarden) and a nearby lake (Lake Storsjon) in Sweden. We investigate the links between a pollen-based land cover reconstruction from Lake Storsjon and paleoenvironmental variables from Gasfjarden itself, including diatom assemblages, organic carbon (C) and nitrogen (N) contents, stable C and N isotopic ratios, and biogenic silica contents. The Lake Storsjon record shows that regional land use was characterized by small-scale agricultural activity between 900 and 1400 CE, which slightly intensified between 1400 and 1800 CE. Substantial expansion of cropland was observed between 1800 and 1950 CE, before afforestation between 1950 and 2010 CE. From the Gasfjarden record, prior to 1800 CE, relatively minor changes in the diatom and geochemical proxies were found. The onset of cultural eutrophication in Gasfjarden can be traced to the 1800s and intensified land use is identified as the main driver. Anthropogenic activities in the 20th century have caused unprecedented ecosystem changes in the coastal inlet, as reflected in the diatom composition and geochemical proxies. (c) 2018 Elsevier Ltd. All rights reserved.Peer reviewe
Sedimentary molybdenum and uranium : Improving proxies for deoxygenation in coastal depositional environments
Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is un-known: (1) to what extent Mo and U enrichment factors (Mo-and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary (depositional environmental) factors impact Mo-and U-EFs. Here we investigate 18 coastal sites with varying bottom water redox conditions, which we define by means of five "redox bins", ranging from persistently oxic to persistently euxinic, from a variety of depositional environments. Our results demonstrate that Mo-and U-EF-based redox proxies and sedimentary Mo and U contents can be used to differentiate bottom water oxygen concentration among a range of modern coastal depositional environments. This is underpinned by the contrasting EFs of Mo and U along the redox gradient, which shows a substantial difference of Mo-EFs between redox bins 3-5 (ir/ regularly suboxic - ir/regularly dysoxic - persistently oxic) and of U-EFs between redox bins 1-2 (persistently euxinic - ir/regularly euxinic). Surprisingly, we observe comparatively low redox proxy potential for U in en-vironments of mild deoxygenation (redox bins 3-5). Further, we found that secondary factors can bias Mo-and U-EFs to such an extent that EFs do not reliably reflect bottom water redox conditions. We investigate the impact of limited Mo sedimentary sequestration in sulfidic depositional environments (i.e., the "basin reservoir effect", equilibrium with FeMoS4), Fe/Mn-(oxy)(hydr)oxide "shuttling", oxidative dissolution, the sulfate methane transition zone in the sediment, sedimentation rate, and the local Al background on Mo-and U-EFs.Peer reviewe
On the Convergence of Kergin and Hakopian Interpolants at Leja Sequences for the Disk
We prove that Kergin interpolation polynomials and Hakopian interpolation
polynomials at the points of a Leja sequence for the unit disk of a
sufficiently smooth function in a neighbourhood of converge uniformly
to on . Moreover, when is on , all the derivatives of
the interpolation polynomials converge uniformly to the corresponding
derivatives of
- …