2,887 research outputs found

    Analysis of Microbial Community during Biofilm Development in an Anaerobic Wastewater Treatment Reactor.

    Get PDF
    The formation, structure, and biodiversity of a multispecies anaerobic biofilm inside an Upflow Anaerobic Sludge Bed (UASB) reactor fed with brewery wastewater was examined using complementary microbial ecology methods such us fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and cloning. The biofilm development can be roughly divided into three stages: an initial attachment phase (0–36 h) characterized by random adhesion of the cells to the surface; a consolidation phase (from 36 h to 2 weeks) defined by the appearance of microcolonies; and maturation phase (from 2 weeks to 2 months). During the consolidation period, proteobacteria with broad metabolic capabilities, mainly represented by members of alpha-Proteobacteria class (Oleomonas, Azospirillum), predominated. Beta-, gamma-, delta- (both syntrophobacteria and sulfate-reducing bacteria) and epsilon- (Arcobacter sp.) Proteobacteria were also noticeable. Archaea first appeared during the consolidation period. A Methanospirillum-like methanogen was detected after 36 h, and this was followed by the detection of Methanosarcina, after 4 days of biofilm development. The mature biofilm displayed a hill and valley topography with cells embedded in a matrix of exopolymers where the spatial distribution of the microorganisms became well-established. Compared to the earlier phases, the biodiversity had greatly increased. Although alpha-Proteobacteria remained as predominant, members of the phyla Firmicutes, Bacteroidete, and Thermotogae were also detected. Within the domain Archaea, the acetoclastic methanogen Methanosaeta concilii become dominant. This study provides insights on the trophic web and the shifts in population during biofilm development in an UASB reactor.post-print1274 K

    Presence of banned chlorinated pollutants in sediments of the Northern Iberian Coast

    Get PDF
    Polychlorinated biphenyls (PCBs) are industrial chemical compounds that were banned in the mid-1970s owing to concerns about their toxicity, persistence and potential to bioaccumulate in the environment. However, despite European and global action, releases continue through diffuse emissions to air and water and PCBs concentrations are still detected in environmental matrices. In the framework of the Regional Sea Conventions such as OSPAR or Barcelona Convention, it is proposed to monitor the concentrations of pollutants that include, at least, the following PCBs: CB 28, 52, 101, 118, 138, 153 and 180. A control of the described PCBs presence was performed in a set of more than 70 surficial marine sediment samples distributed in the Gulf of Biscay/Atlantic coastal area. The analysis includes an accelerated solvent extraction step (ASE) followed by detection in a gas chromatography coupled to ECD detector. The analysis was under QA/QC to guarantee the quality of the results. The results indicate a detectable presence of PCBs pointing out higher concentration in eastern stations. Background Assessment Concentration (BACs) and Environmental Assessment Criteria (EAC) are assessment criteria that in place for polychlorinated biphenyls (PCBs) in sediment and they were used to evaluate the concentrations found. Most of the sediments have concentrations close to or even smaller than the BACs but in some specific sediments the concentration of some of the PCBs exceeds the EAC indicating possible toxic effects

    Phases I–III Clinical Trials Using Adult Stem Cells

    Get PDF
    First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomized clinical trials and their limitations, discuss the key points in the design of future trials, and depict new directions of research in this fascinating field

    Minimum ignition energy of methanol-air mixtures

    Get PDF
    A method for computing minimum ignition energies for gaseous fuel mixtures with detailed and reduced chemistry, by numerical integration of time-dependent conservation equations in a spherically symmetrical configuration, is presented and discussed, testing its general characteristics and accuracy. The method is applied to methanol-air mixtures described by a 38-step Arrhenius chemistry description and by an 8-step chemistry description based on steady-state approximations for reaction intermediaries. Comparisons of predictions with results of available experimental measurements produced reasonable agreements and supported both the robustness of the computational method and the usefulness of the 8-step reduction in achieving accurate predictions.This work was supported by the Spanish MCINN through Projects # CSD2010-00011, ENE2012-33213 and ENE2015-65852-C2-1-R

    A multipurpose reduced chemical-kinetic mechanism for methanol combustion

    Get PDF
    A multipurpose reduced chemical-kinetic mechanism for methanol combustion comprising 8 overall reactions and 11 reacting chemical species is presented. The development starts by investigating the minimum set of elementary reactions needed to describe methanol combustion with reasonable accuracy over a range of conditions of temperature, pressure, and composition of interest in combustion. Starting from a 27-step mechanism that has been previously tested and found to give accurate predictions of ignition processes for these conditions, it is determined that the addition of 11 elementary reactions taken from its basis (San Diego) mechanism extends the validity of the description to premixed-flame propagation, strain-induced extinction of non-premixed flames, and equilibrium composition and temperatures, giving results that compare favourably with experimental measurements and also with computations using the 247-step detailed San Diego mechanism involving 50 reactive species. Specifically, premixed-flame propagation velocities and extinction strain rates for non-premixed counterflow flames calculated with the 38-step mechanism show departures from experimental measurements and detailed-chemistry computations that are roughly on the order of 10%, comparable with expected experimental uncertainties. Similar accuracy is found in comparisons of autoignition times over the range considered, except at very high temperatures, under which conditions the computations tend to overpredict induction times for all of the chemistry descriptions tested. From this 38-step mechanism, the simplification is continued by introducing steady-state approximations for the intermediate species CH3, CH4, HCO, CH3O, CH2OH, and O, leading to an 8-step reduced mechanism that provides satisfactory accuracy for all conditions tested.This work was supported by the Spanish MCINN [projects numbers CSD2010-00011, ENE2012-33213 and ENE2015-65852-C2-1-R

    Possible ring material around centaur (2060) Chiron

    Get PDF
    We propose that several short duration events observed in past stellar occultations by Chiron were produced by rings material. From a reanalysis of the stellar occultation data in the literature we determined two possible orientations of the pole of Chiron's rings, with ecliptic coordinates l=(352+/-10) deg, b=(37+/-10) deg or l=(144+/-10) deg, b=(24+/-10) deg . The mean radius of the rings is (324 +/- 10) km. One can use the rotational lightcurve amplitude of Chiron at different epochs to distinguish between the two solutions for the pole. Both imply lower lightcurve amplitude in 2013 than in 1988, when the rotational lightcurve was first determined. We derived Chiron's rotational lightcurve in 2013 from observations at the 1.23-m CAHA telescope and indeed its amplitude is smaller than in 1988. We also present a rotational lightcurve in 2000 from images taken at CASLEO 2.15-m telescope that is consistent with our predictions. Out of the two poles the l=(144+/-10) deg, b=(24+/-10) deg solution provides a better match to a compilation of rotational lightcurve amplitudes from the literature and those presented here. We also show that using this preferred pole, Chiron's long term brightness variations are compatible with a simple model that incorporates the changing brightness of the rings as the tilt angle with respect to the Earth changes with time. Also, the variability of the water ice band in Chiron's spectra in the literature can be explained to a large degree by an icy ring system whose tilt angle changes with time and whose composition includes water ice, analogously to the case of Chariklo. We present several possible formation scenarios for the rings from qualitative points of view and speculate on the reasons why rings might be common in centaurs. We speculate on whether the known bimodal color distribution of centaurs could be due to presence of rings and lack of them

    Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells

    Get PDF
    Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to cell aging related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6 and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies
    corecore