7,253 research outputs found
Some Global Aspects of Duality is String Theory
We explore some of the global aspects of duality transformations in String
Theory and Field Theory. We analyze in some detail the equivalence of dual
models corresponding to different topologies at the level of the partition
function and in terms of the operator correspondence for abelian duality. We
analyze the behavior of the cosmological constant under these transformations.
We also explore several examples of non-abelian duality where the classical
background interpretation can be maintained for the original and the dual
theories. In particular we construct a non-abelian dual of which
turns out to be a three-dimensional black holeComment: 31pp. One figure available upon request. CERN-TH-6991/6
On 1+1 Dimensional Galilean Supersymmetry in Ultracold Quantum Gases
We discuss a 1+1 dimensional Galilean invariant model recently introduced in
connection with ultracold quantum gases. After showing its relation to a
nonrelativistic 2+1 Chern-Simons matter system, we identify the generators of
the supersymmetry and its relation with the existence of self-dual equationsComment: 12 page
A heavy quark effective field lagrangian keeping particle and antiparticle mixed sectors
We derive a tree-level heavy quark effective Lagrangian keeping
particle-antiparticle mixed sectors allowing for heavy quark-antiquark pair
annihilation and creation. However, when removing the unwanted degrees of
freedom from the effective Lagrangian one has to be careful in using the
classical equations of motion obeyed by the effective fields in order to get a
convergent expansion on the reciprocal of the heavy quark mass. Then the
application of the effective theory to such hard processes should be sensible
for special kinematic regimes as for example heavy quark pair production near
threshold.Comment: LaTeX, 14 pages, 1 EPS figure
LANDSAT-4/5 image data quality analysis
A LANDSAT Thematic Mapper (TM) quality evaluation study was conducted to identify geometric and radiometric sensor errors in the post-launch environment. The study began with the launch of LANDSAT-4. Several error conditions were found, including band-to-band misregistration and detector-to detector radiometric calibration errors. Similar analysis was made for the LANDSAT-5 Thematic Mapper and compared with results for LANDSAT-4. Remaining band-to-band misregistration was found to be within tolerances and detector-to-detector calibration errors were not severe. More coherent noise signals were observed in TM-5 than in TM-4, although the amplitude was generally less. The scan direction differences observed in TM-4 were still evident in TM-5. The largest effect was in Band 4 where nearly a one digital count difference was observed. Resolution estimation was carried out using roads in TM-5 for the primary focal plane bands rather than field edges as in TM-4. Estimates using roads gave better resolution. Thermal IR band calibration studies were conducted and new nonlinear calibration procedures were defined for TM-5. The overall conclusion is that there are no first order errors in TM-5 and any remaining problems are second or third order
Static properties of the dissipative random quantum Ising ferromagnetic chain
We study the zero temperature static properties of dissipative ensembles of
quantum Ising spins arranged on periodic one dimensional finite clusters and on
an infinite chain. The spins interact ferro-magnetically with nearest-neighbour
pure and random couplings. They are subject to a transverse field and coupled
to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system
using Monte Carlo simulations of the classical two-dimensional counterpart
model. The coupling to the bath enhances the extent of the ordered phase, as
found in mean-field spin-glasses. In the case of finite clusters we show that a
generalization of the Caldeira-Leggett localization transition exists. In the
case of the infinite random chain we study the effect of dissipation on the
transition and the Griffiths phase.Comment: 21 pages, 10 figure
Memory effects in classical and quantum mean-field disordered models
We apply the Kovacs experimental protocol to classical and quantum p-spin
models. We show that these models have memory effects as those observed
experimentally in super-cooled polymer melts. We discuss our results in
connection to other classical models that capture memory effects. We propose
that a similar protocol applied to quantum glassy systems might be useful to
understand their dynamics.Comment: 24 pages, 12 figure
Power scaling rules for charmonia production and HQEFT
We discuss the power scaling rules along the lines of a complete Heavy Quark
Effective Field Theory (HQEFT) for the description of heavy quarkonium
production through a color-octet mechanism. To this end, we firstly derive a
tree-level heavy quark effective Lagrangian keeping both particle-antiparticle
mixed sectors allowing for heavy quark-antiquark pair annihilation and
creation, but describing only low-energy modes around the heavy quark mass.
Then we show the consistency of using HQEFT fields in constructing four-fermion
local operators a la NRQCD, to be identified with standard color-octet matrix
elements. We analyze some numerical values extracted from charmonia production
by different authors and their hierarchy in the light of HQEFT.Comment: LaTeX, 19 pages, 3 EPS figure
Experimental observation of fractional topological phases with photonic qudits
Geometrical and topological phases play a fundamental role in quantum theory.
Geometric phases have been proposed as a tool for implementing unitary gates
for quantum computation. A fractional topological phase has been recently
discovered for bipartite systems. The dimension of the Hilbert space determines
the topological phase of entangled qudits under local unitary operations. Here
we investigate fractional topological phases acquired by photonic entangled
qudits. Photon pairs prepared as spatial qudits are operated inside a Sagnac
interferometer and the two-photon interference pattern reveals the topological
phase as fringes shifts when local operations are performed. Dimensions and were tested, showing the expected theoretical values.Comment: 6 pages, 4 figure
- …