79 research outputs found

    R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system.

    Get PDF
    BACKGROUND: Examining allelic variation of R-genes in closely related perennial species of Arabidopsis thaliana is critical to understanding how population structure and ecology interact with selection to shape the evolution of innate immunity in plants. We finely sampled natural populations of Arabidopsis lyrata from the Great Lakes region of North America (A. l. lyrata) and broadly sampled six European countries (A. l. petraea) to investigate allelic variation of two R-genes (RPM1 and WRR4) and neutral genetic markers (Restriction Associated DNA sequences and microsatellites) in relation to mating system, phylogeographic structure and subspecies divergence. RESULTS: Fine-scale sampling of populations revealed strong effects of mating system and population structure on patterns of polymorphism for both neutral loci and R-genes, with no strong evidence for selection. Broad geographic sampling revealed evidence of balancing selection maintaining polymorphism in R-genes, with elevated heterozygosity and diversity compared to neutral expectations and sharing of alleles among diverged subspecies. Codon-based tests detected both positive and purifying selection for both R-genes, as commonly found for animal immune genes. CONCLUSIONS: Our results highlight that combining fine and broad-scale sampling strategies can reveal the multiple factors influencing polymorphism and divergence at potentially adaptive genes such as R-genes

    Reproductive Behaviour Evolves Rapidly When Intralocus Sexual Conflict Is Removed

    Get PDF
    Background Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C1-4) where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML1-4) showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased [1]. Methodology/Principal Findings Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. Conclusion/Significance These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness

    Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection

    Get PDF
    Background: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    SEXUAL DIMORPHISM MASKS LIFE-HISTORY TRADE-OFFS IN THE DIOECIOUS PLANT SILENE LATIFOLIA

    No full text
    Females of dioecious plant species are expected to show greater trade-offs with other life history traits than males because of their high investment in reproduction. We investigated life history traits and resource allocation patterns for both males and females of the dioecious plant Silene latifolia, to document allocation both prior to and after reproductive investment. In addition, the impact of fruit production on subsequent allocation to reproduction and growth was investigated hv varying the number nf flowers pollinated females. The mean date of first reproduction was the same for males and females. Early-flowering plants of both sexes invested less in leaf biomass than plants that delayed flowering. The percentage of flowers pollinated had a significant effect on how resources were allocated, and on the amount and timing of further flower production. Sexual dimorphism was observed in resource allocation patterns after, but not prior to, investment in reproduction. Overall, pollinated females were found to have more leaf biomass and invest nearly twice as much in reproduction as males, in spite of an apparent trade-off between leaf production and reproduction within both females and males. We conclude that sexual dimorphism in life history traits that affects resource acquisition causes the resource pool that is allocated to be variable, rather than static, thereby masking the underlying tradeoffs.</p
    • 

    corecore