13,693 research outputs found
Virtual prototyping of medieval weapons for historical reconstruction of siege scenarios starting from topography and archaeological investigations
Chronicles of sieges to castles or fortresses, using “machinae”, can often be found in historical sources. Moreover, archaeological excavations of castles or fortresses has brought to light rocks or projectiles whose carving suggests a military usage. Nevertheless, chronicles and discoveries alone, are seldom enough to propose a faithful reconstruction of these machines. Therefore, the aim of this research is the development of methodologies for reconstructing virtual scenarios of sieges, starting from the scarce information available. In order to achieve it, a procedure for the virtual reconstruction of the siege machine has been set up, focusing on typology and dimensions of the machines, also investigating possible fire positions according to topography. The entire procedure has been developed using the siege of Cervara di Roma’s Rocca as a case study. Late medieval chronicles (end of 13th Century) report the siege brought by the papal army in order to restore the jurisdiction on the Cervara’s stronghold, following the insurrection of a group of vassals headed by a monk named Pelagio. The discovery, in the area of the Rocca, of a stone that could have been used as a projectile confirms what reported. The proposed methodology is composed of two parts. The first one is connected to the study of the “internal ballistics”, to understand the performances and to build virtual models of siege machines. The second part is the study of the “external ballistics”, then to the positioning and shooting ability of possible machines, analysing the topography of the area. In this paper, we present the feasibility of this methodology through the preliminary results achieved correlating internal and external ballistics
The quiescent X-ray emission of three transient X-ray pulsars
We report on BeppoSAX and Chandra observations of three Hard X-Ray Transients
in quiescence containing fast spinning (P<5 s) neutron stars: A 0538-66, 4U
0115+63 and V 0332+53. These observations allowed us to study these transients
at the faintest flux levels thus far. Spectra are remarkably different from the
ones obtained at luminosities a factor >10 higher, testifying that the
quiescent emission mechanism is different. Pulsations were not detected in any
of the sources, indicating that accretion of matter down to the neutron star
surface has ceased. We conclude that the quiescent emission of the three X-ray
transients likely originates from accretion onto the magnetospheric boundary in
the propeller regime and/or from deep crustal heating resulting from
pycnonuclear reactions during the outbursts.Comment: Accepted for publication on ApJ (5 pages and 2 figures
The 1998 outburst of the X-ray transient XTE J2012+381 as observed with BeppoSAX
We report on the results of a series of X-ray observations of the transient
black hole candidate XTE J2012+381 during the 1998 outburst performed with the
BeppoSAX satellite. The observed broad-band energy spectrum can be described
with the superposition of an absorbed disk black body, an iron line plus a high
energy component, modelled with either a power law or a Comptonisation tail.
The source showed pronounced spectral variability between our five
observations. While the soft component in the spectrum remained almost
unchanged throughout our campaign, we detected a hard spectral tail which
extended to 200 keV in the first two observations, but became barely detectable
up to 50 keV in the following two. A further re-hardening is observed in the
final observation. The transition from a hard to a soft and then back to a hard
state occurred around an unabsorbed 0.1-200 keV luminosity of 10^38 erg/s (at
10 kpc). This indicates that state transitions in XTE 2012+281 are probably not
driven only by mass accretion rate, but additional physical parameters must
play a role in the evolution of the outburst.Comment: Paper accepted for publication on A&A (macro included, 9 pages, 5
figures
The return to quiescence of Aql X-1 following the 2010 outburst
Aql X-1 is the most prolific low mass X-ray binary transient hosting a
neutron star. In this paper we focus on the return to quiescence following the
2010 outburst of the source. This decay was monitored thanks to 11 pointed
observations taken with XMM-Newton, Chandra and Swift. The decay from outburst
to quiescence is very fast, with an exponential decay characteristic time scale
of ~2 d. Once in quiescence the X-ray flux of Aql X-1 remained constant, with
no further signs of variability or decay. The comparison with the only other
well-monitored outburst from Aql X-1 (1997) is tail-telling. The luminosities
at which the fast decay starts are fully compatible for the two outbursts,
hinting at a mechanism intrinsic to the system and possibly related to the
neutron star rotation and magnetic field (i.e., the propeller effect). In
addition, for both outbursts, the decay profiles are also very similar, likely
resulting from the shut-off of the accretion process onto the neutron star
surface. Finally, the quiescent neutron star temperatures at the end of the
outbursts are well consistent with one another, suggesting a hot neutron star
core dominating the thermal balance. Small differences in the quiescent X-ray
luminosity among the two outbursts can be attributed to a different level of
the power law component.Comment: MNRAS accepted (4 figures and 6 tables
Robust die compensation in sheet metal design through the integration of dual response surface and shape function optimization
In sheet metal forming, springback represents a major drawback increasing die set-up problems, especially for ultra-high strength steels. Finite Element Analysis is a well-established method to simulate the process during design, and multicriteria optimizations, for example, via surrogate models, are investigated in order to develop integrated design. Since to take into account also springback compensation die design may involve a large number of geometric variables, this paper presents a robust design formulation, based on the adoption of the shape function optimization, to describe springback in terms of weights directly associated to global shape variations of the die shape. Doing so, multicriteria optimization, which involves also die compensation, can be set up in a more intuitive approach, as requested in the preliminary steps of die design. After the introduction of the industrial problem, the mathematical formulation of the shape function optimization is presented together with its novel extension to Robust Design, which is based on the Dual Response Surface. Through a test case derived from the head part of a B-pillar, stamped from a Dual Phase sheet 1.5 mm thick, this novel extension investigates the effect of 6% variation from nominal values of initial yield stress and thickness. Results demonstrate the feasibility of the procedure, underlying that an optimal compensation may not be optimal in terms of process robustness
An XMM-Newton study of the 401 Hz accreting pulsar SAX J1808.4-3658 in quiescence
SAX J1808.4-3658 is a unique source being the first Low Mass X-ray Binary
showing coherent pulsations at a spin period comparable to that of millisecond
radio pulsars. Here we present an XMM-Newton observation of SAX J1808.4-3658 in
quiescence, the first which assessed its quiescent luminosity and spectrum with
good signal to noise. XMM-Newton did not reveal other sources in the vicinity
of SAX J1808.4-3658 likely indicating that the source was also detected by
previous BeppoSAX and ASCA observations, even if with large positional and flux
uncertainties. We derive a 0.5-10 keV unabsorbed luminosity of L_X=5x10^{31}
erg/s, a relatively low value compared with other neutron star soft X-ray
transient sources. At variance with other soft X-ray transients, the quiescent
spectrum of SAX J1808.4-3658 was dominated by a hard (Gamma~1.5) power law with
only a minor contribution (<10%) from a soft black body component. If the power
law originates in the shock between the wind of a turned-on radio pulsar and
matter outflowing from the companion, then a spin-down to X-ray luminosity
conversion efficiency of eta~10^{-3} is derived; this is in line with the value
estimated from the eclipsing radio pulsar PSR J1740-5340. Within the deep
crustal heating model, the faintness of the blackbody-like component indicates
that SAX J1808.4-3658 likely hosts a massive neutronstar (M>1.7 solar masses).Comment: Paper accepted for publication in ApJ
A Search for Pulsars in Quiescent Soft X-Ray Transients. I
We have carried out a deep search at 1.4 GHz for radio pulsed emission from
six soft X-ray transient sources observed during their X-ray quiescent phase.
The commonly accepted model for the formation of the millisecond radio pulsars
predicts the presence of a rapidly rotating, weakly magnetized neutron star in
the core of these systems. The sudden drop in accretion rate associated with
the end of an X-ray outburst causes the Alfv\`en surface to move outside the
light cylinder, allowing the pulsar emission process to operate. No pulsed
signal was detected from the sources in our sample. We discuss several
mechanisms that could hamper the detection and suggest that free-free
absorption from material ejected from the system by the pulsar radiation
pressure could explain our null result.Comment: accepted by Ap
Investigation via morphological analysis of aluminium foams produced by replication casting
Foams and porous materials with cellular structure have many interesting combinations of physical and mechanical properties coupled with low specific weight. By means of replication casting it is possible to manufacture foams from molten metal without direct foaming. A soluble salt is used as space holder, which is removed by leaching in water. This can be done successfully if the content of space holding fillers is so high that all the granules are interconnected. One of the main advantages of using the replication casting is a close control of pore sizes which is given by the distribution of particle sizes of the filler material. This contrasts with the pore size distribution of the materials foamed by other processes where a wider statistical distribution of pores is found. On the other hand, the maximum porosities that can be achieved using space holders are limited to values below 60%, whereas the other methods allow for porosities up to 98%. Temperature of the mould and infiltration pressure are critical process parameters: a typical problem encountered is the premature solidification of the melt, especially due to the high heat capacity of the salt. In this work foam properties such as cell shape, distribution and anisotropy and defect presence are investigated by using digital image processing technique. For this purpose replicated AlSi7Mg0.3 alloy foams are produced by infiltrating preforms of NaCl particles, varying the metal infiltration pressure and the mould preheating temperature. An original procedure based on image analysis has been set up to determine size, morphology and distribution of cells. The paper demonstrates that this methodology, coupled with microstructural analysis, is a useful tool for investigating the effects of process parameters on foam properties
The variable quiescence of Cen X-4
Cen X-4 is one of the best studied low-mass neutron star transients in
quiescence. Thanks to XMM-Newton large throughput, Cen X-4 was observed at the
highest signal to noise ever. This allowed us to disclose rapid (>100 s), large
(45+/-7 rms in the 10^{-4}-1 Hz range) intensity variability, especially at low
energies. In order to highlight the cause of this variability, we divided the
data into intensity intervals and fit the resulting spectra with the canonical
model for neutron star transients in quiescence, i.e. an absorbed power law
plus a neutron star atmosphere. The fit is consistent with a variable column
density plus variability in (at least) one of the spectral models. Variations
in the neutron star atmosphere might suggest that accretion onto the neutron
star surface is occuring in quiescence; variations in the power law tail should
support the view of an active millisecond radio pulsar emitting X-rays at the
shock between a radio pulsar wind and inflowing matter from the companion star.Comment: 5 pages, 2 tables, 4 figures, accepted for publication on Ap
Bulk Lorentz factors of Gamma-Ray Bursts
Knowledge of the bulk Lorentz factor of GRBs allows us to
compute their comoving frame properties shedding light on their physics. Upon
collisions with the circumburst matter, the fireball of a GRB starts to
decelerate, producing a peak or a break (depending on the circumburst density
profile) in the light curve of the afterglow. Considering all bursts with known
redshift and with an early coverage of their emission, we find 67 GRBs with a
peak in their optical or GeV light curves at a time . For another
106 GRBs we set an upper limit . We show that
is due to the dynamics of the fireball deceleration and not to the passage of a
characteristic frequency of the synchrotron spectrum across the optical band.
Considering the of 66 long GRBs and the 85 most constraining upper
limits, using censored data analysis methods, we reconstruct the most likely
distribution of . All are larger than the time when the prompt emission peaks, and are much larger than the time when the fireball becomes transparent. The reconstructed distribution of
has median value 300 (150) for a uniform (wind) circumburst
density profile. In the comoving frame, long GRBs have typical isotropic
energy, luminosity, and peak energy erg, erg s ,
and keV in the homogeneous (wind) case. We
confirm that the significant correlations between and the rest frame
isotropic energy (), luminosity () and peak energy
() are not due to selection effects. Assuming a typical opening
angle of 5 degrees, we derive the distribution of the jet baryon loading which
is centered around a few .Comment: 19 pages, 11 figures, 6 tables. Accepted for publication on Astronomy
& Astrophysic
- …