
Research Article
Robust Die Compensation in Sheet Metal
Design through the Integration of Dual Response Surface and
Shape Function Optimization

Michele Bici ,1 Francesca Campana ,1 Flavio Cimolin,2 and Leopoldo Rizzo3

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma “La Sapienza,” Via Eudossiana 18, 00184 Roma, Italy
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In sheet metal forming, springback represents a major drawback increasing die set-up problems, especially for ultra-high strength
steels. Finite Element Analysis is a well-established method to simulate the process during design, and multicriteria optimizations,
for example, via surrogatemodels, are investigated in order to develop integrated design. Since to take into account also springback
compensation die design may involve a large number of geometric variables, this paper presents a robust design formulation,
based on the adoption of the shape function optimization, to describe springback in terms of weights directly associated to global
shape variations of the die shape. Doing so, multicriteria optimization, which involves also die compensation, can be set up in
a more intuitive approach, as requested in the preliminary steps of die design. After the introduction of the industrial problem,
the mathematical formulation of the shape function optimization is presented together with its novel extension to Robust Design,
which is based on the Dual Response Surface. Through a test case derived from the head part of a B-pillar, stamped from a Dual
Phase sheet 1.5mm thick, this novel extension investigates the effect of 6% variation from nominal values of initial yield stress and
thickness. Results demonstrate the feasibility of the procedure, underlying that an optimal compensation may not be optimal in
terms of process robustness.

1. Introduction

In sheet metal forming, springback is due to the elastic
recovery of the stamping forces after tool removal. It gives
global shape deviations (opening of bendings, deflections, . . .)
if no geometric constraints may contrast it. Generally speak-
ing, initial thickness, component shape, stamping forces, and
material characteristics are major responsible of its severity.

Springback prevention and optimization represent an
important goal for the integrated design of sheet metal
formed parts, since shape distortion of components may
obstacle correct assembly. In particular, because of their
enhanced mechanical properties, Advanced High Strength
Steels (AHSS) are often applied to reduce weight of structural
components by means of thickness reduction, but they
present a more pronounced springback due to an increased

stamping force [1]. As a consequence, the interest about
numerical optimization of springback has increased and
Finite Element Analysis (FEA) plays an important role to
reduce die try-out efforts, similarly to what already happens
for other stamping problems [2–6].

The industrial approach to reduce springback consists
in die compensation, which is a shape modification of the
die, able to overbend or overstretch critical areas of the
component.Therefore, numerical optimization of springback
mainly consists of finding the optimal die shape able to
compensate component distortion after springback. Many
researches are concerned with this topic and solve the
problem with different approaches.

The Spring-Forward method (SF) represents one of
the first formulations developed in order to numerically
reduce springback by die compensation [7]. It works on the
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equilibrium of the forces that act on the component at the end
of stamping. In this phase, the tools apply to the component
a stress field that induces springback as soon as they are
removed. An elastic simulation on the free part, loaded
according to this stress field with reversed sign, may give a
final displacement that is assumed as a die compensation of
the applied load.

An alternative method is the Smooth Displacement
Adjustment (SDA) or its first formulation, simply called
Displacement Adjustment (DA) [8].The basic idea of the DA
method is to adjust the die surface in the opposite direction
of the springback deviation (DA in a single stage). To achieve
improved results, this approach is usually applied iteratively,
since tool geometry converges to a shape able to reproduce
the optimal displacement field (the target part) by leading
to zero the displacement deviation. In [9], a comparison
between DA and SF is discussed according to the analytical
bar stretch bending model, pointing out the supremacy of
the DA method, as discussed also in [10]. Unfortunately,
in the DA method, the compensation field is generally
applied to the mesh nodes and this may give unacceptable
tools or rough solutions in case of complex shapes [11]. To
solve this problem, the Smooth DA method (SDA), or the
Surface Controlled Overbending method (SCO), has been
proposed [12] and successfully applied also to industrial
case studies [13]. The SDA applies the DA formulation on
an analytical approximation of the discrete mesh that is
made according to polynomial basis-functions of x, y, z,
while, in the SCO, the shape modifications are applied to
the control points of NURBS surfaces that represent the
CAD models of the component and the die [14]. A more
recent approach to springback compensation is discussed and
applied in [15, 16]. It approaches the die compensation as
an inverse problem solved by shape functions optimization.
Shape functions are derived from modal analysis of the final
component and modifications of the die are obtained by
combining similar shape functions that are related to the
die. The linear relationship, among die shape functions and
final component’s shape functions, allows to describe the
problem of springback in terms of a more limited number of
variables, which is suitable to be solved in an optimization
fashion.

In this paper, the die compensation by shape function
optimization is integrated into Robust Design, to demon-
strate its ability in support sheet metal forming design
optimization thanks to a reduction of the design space
related to the geometrical shape variables. Generally speak-
ing, Robust Design techniques are particularly interesting to
reduce product quality variations induced by random process
variables (e.g., blank properties within their tolerance range).
Many test cases and applications related to the robustness of
forming quality are present in literature [17–21]. The specific
methodologies applied in this field consist of different sta-
tistical techniques such as Dual Response Surface modeling
or Monte Carlo method coupled with numerical Design
of Experiments (DOE). In [22–26], some examples that
involve springback are discussed.They investigate springback
sensitivity to noise variables such as lubrication or material
characteristics. In particular, in [27], the interaction between

tool shape and blank yield stress variation is found as the
most significant interaction in comparisonwith other process
variables such as, for example, the blankholder force. In [28],
a general overview of the optimization problems in sheet
metal forming design is shown from the point of view of
surrogate modeling, also known as meta-modeling. Critical
issues for widespread applications of these numerical tools in
integrated design are the following:

(i) The difficulty of defining proper objective functions
(ii)The large number of variables from different technical

aspects
(iii) The complexity of the interactions among them due

to the nonlinearity of the process (large strains and plasticity)
Practical experience in the press-shop usually helps deci-

sions related to these issues and their introduction in FEA
optimization loops has been made with different levels of
complexity: from single objective function definition up to
knowledge based design [17, 29, 30].

In [31], a compensation strategy, suitable to include also
process robustness, is claimed as necessary from the indus-
trial point of view. Nevertheless, optimization processes with
die compensation are not so frequent due to the difficulty
of obtaining shape continuity and avoiding time-consuming
loops between FEA and CADmodel since they may include a
large number of geometric variables. In [32], an evolutionary
algorithm, based on neural network, is applied to springback
to demonstrate the efficacy and efficiency of parametric
optimization in sheet metal design.

After a brief introduction of the theoretical background
of the adopted die compensation strategy presented in
Section 2, Section 3 explains the Robust Design technique
known asDual Response Surface (Section 3.1) and its integra-
tion with the adopted die compensation strategy for robust
design (Section 3.2). In Section 4, the test case related to the
head part of a B-pillar is described and the results of its
die compensation are shown and discussed in Section 5, and
then Section 6 shows the results of the proposed integration
with the Dual Response Surface and the related discussion
is in Section 7. Finally, the main conclusions are outlined in
Section 8.

2. Die Compensation Strategy

Themathematical formulation of the problemhas been firstly
presented in [15]. In FEA, both die and deep drawn sheet
can be described by a mesh, represented, respectively, by
the vectors s𝑛𝑜𝑚 ∈ R𝑁 and u𝑛𝑜𝑚 ∈ R𝑀. In principle, we
should think of u𝑛𝑜𝑚 as the mesh associated to the desired
component configuration as conceived by the designer, while
s𝑛𝑜𝑚 is usually computed by translation and offset of the
component geometry. By means of FEA, it is possible to
predict the final configuration of the formed sheet as a
function of the die shape. Let us denote by 𝐺 the function
computed by the FE code that, starting from a certain die
configuration 𝑠, gives as output the final configuration of the
sheet u. Usually, because of springback, it can be verified that𝐺(s𝑛𝑜𝑚) ≠ u𝑛𝑜𝑚, where the subscript “nom” stands for the
nominal configuration defined by the designer.
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The springback compensation problem can then be
expressed as the problem of seeking that peculiar die config-
uration s∗ that minimizes the objective function

𝑒 (s) = 󵄩󵄩󵄩󵄩u𝑛𝑜𝑚 − 𝐺 (s)󵄩󵄩󵄩󵄩 (1)

where the norm is a suitable choice, for example, the
Euclidean one.

The best possible choice would be to find out a die config-
uration s∗ such that Equation (1) is found equal to zero, but
this is, in general, neither mathematically nor technologically
assured to exist, because of the high nonlinearity of the
function 𝐺 and of the possibility of undercuts, respectively.
Considering that, usually, the 𝑁 nodal unknowns are of the
order of 10.000, the computation of 𝐺 can be carried out
through a very expensive FEA.

This means that it is fundamental to rewrite the opti-
mization problem (1) in a form that depends on far less than𝑁 variables in order to keep limited the total number of
evaluations. The key idea of the Shape Function approach
is to define a reduced number of basic shapes that, assem-
bled together by linear combination, can be used to well
approximate the configurations of both s and u. For a generic
nodal configuration x, one can define an ordered succession
of eigenvalue-eigenvector pairs {𝜔2i ,Ψi} associated to the
eigenvalue problem:

Kx = 𝜔2Mx (2)

K and M are the stiffness and mass matrices, respec-
tively. These correspond to the well-known vibration modes,
employed in many engineering applications associated to
structural analysis [33].

K andM are orthogonal among each other since

Ψ
T
i MΨj = 𝛿ij
ΨTi KΨj = 𝛿ij, (3)

whereΨi stands for the ith shape function and 𝛿ij is equal to
1 if 𝑖 = 𝑗; otherwise, it is null.

Setting M = I, where I is the identity matrix, ΨTi Ψj = 𝛿ij,
so they are orthogonal functions. This property makes the
shape functions a very suitable choice for the representation
of the deformations of both s and u around their nominal
configurations, as explained in the following.

Let us then compute the sequence of shape functions
ws
𝑖 and wu.

𝑖 , evaluated in the neighborhood of the nominal
configuration of the die and the final sheet, respectively. A
reduction of the problem size can be obtained by selecting
only 𝑛 and 𝑚 shape functions for each of the two spaces.
Doing so, a deformed die can be obtained through a linear
combination of the shape functions on the die, weighted by
the coefficients 𝛼𝑖:

s = s𝑛𝑜𝑚 + 𝑛∑
𝑖=1

𝛼𝑖w𝑖𝑠 (4)

The final configuration of the sheet can be formulated
according to

u = 𝐺(s𝑛𝑜𝑚 + 𝑛∑
𝑖=1

𝛼𝑖w𝑖𝑠) = u𝑛𝑜𝑚 + 𝑚∑
𝑗=1

𝛽𝑗w𝑗𝑢 + r𝑚
𝑢 (5)

where the last expression represents the resulting configu-
ration in terms of the shape functions w𝑢𝑗 , collecting the
reminder into the term r𝑢𝑚. In this way, we have defined amap
between the coefficients 𝛼𝑖 associated to the configuration
of the die and the coefficients 𝛽𝑗 related to corresponding
stamped sheet.

Thanks to the orthogonality of the shape functions,
coefficients 𝛽𝑗 are computed by

𝛽𝑗 = (u − u𝑛𝑜𝑚) ⋅ w𝑗𝑢 (6)

By changing the values of the coefficients 𝛼𝑖, we can generate
different die shapes, which, at the end of the simulation,
will provide different pieces, which are read in terms of
the coefficients 𝛽𝑗. Of course, the nominal die configuration
corresponds to 𝛼𝑖 = 0 for all i, while the nominal sheet
configuration corresponds to 𝛽𝑗 = 0 for all 𝑗. Collecting the
coefficients 𝛼𝑖 and 𝛽𝑗 into the vectors 𝛼 ∈ R𝑛 and 𝛽 ∈
R𝑚, it is possible to reformulate the problem of springback
compensation in terms of these new variables. Doing so, with
respect to the new bases, we obtain a problem that mimics
the behavior of the original one. In analogy to the case,
which leads from s to u through the function G, let us call 𝑔
the function that gives 𝛽 from 𝛼. The optimization problem
expressed in the shape function space is now to look for the
die configuration 𝛼∗ that minimizes the objective function:

𝜀 (𝛼) = 12 󵄩󵄩󵄩󵄩𝑔 (𝛼)󵄩󵄩󵄩󵄩 = 12𝛽𝑇𝛽 = 12
𝑚∑
𝑗=1

𝛽𝑗2 (7)

The gain in switching from optimization problem (1) to (7)
is that we have reduced the number of unknowns from𝑁 to 𝑚 through Equations (5) and (7), and the latter can
be kept around 10-50 without losing too much accuracy
in the reproduction of the deformations. This fact depends
on the high suitability of the shape functions to reproduce
springback-associated deformations, which span over the
whole piece and rarely have localized influences on it;
thus high frequency modes are less significant to describe
springback displacement.

Solution of Equation (7) can be found through least
squares optimization. A preliminary implementation applies
the modified Gauss-Newton method, further improved by
means of a line-search and through the introduction of a
reduced basis technique for the advancing step estimation
[15].

3. Robust Design Formulation

3.1. Theoretical Background. Robust Design (RD) is con-
cerned with minimizing the random effects of one or more
noise variables on the expected quality of a product. In
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manufacturing processes, such as sheet metal forming, blank
characteristics may be seen as noise variables that randomly
change within their tolerance range, producing a scatter
around the target value of a quality response that can be
associated to springback or other structural stamping defects.

In order of time, Taguchi’s method represents the first
methodical approach to RD, while meta-modelling and Dual
Response Surface have been introduced next, to overcome
some theoretical problems present in Taguchi’s approach
[35, 36]. Nevertheless, all of them are based on Design Of
Experiments (DOE) techniques [37]. They make a global
investigation of the design space, finding main and inter-
action effects of variables on the quality response, in a less
expensive way. A RD problem divides the design space
in control and noise factors. The experiments, which are
performed according to noise factors, permit to evaluate
response scattering; meanwhile a proper variation of control
factors, able to interact with noise, permits to find out both
optimal conditions that move the response mean to the target
and the response variance to a minimum.

In the most recent years, the decrease of computational
costs of FEA has spread the adoption of meta-modelling
techniques substituting Taguchi’s simplified approach with
the Dual Response Surface or other stochastic methods [38].
The main objective of meta-models is to describe the rela-
tionships between design parameters and quality response
analytically. Taguchi’s analysis is often limited to main and
linear effects while the Dual Response Surface, thanks to the
adoption of a central composite design, is suitable also for
nonlinear investigations. This method describes both mean
and variance analytically, starting from a general meta-model
of the response (mixed model approach).

Assuming 𝑘 experiments, made according to a central
composite design that joins together control and noise fac-
tors, the ith response, 𝛾𝑖, can be written as

𝑦𝑖 = 𝛾0 + 𝑓𝑇 (𝑐𝑖) 𝛾 + 𝑛𝑖𝑇𝛿 + 𝑓𝑇 (𝑐𝑖) Λ𝑛𝑖 + 𝑛𝑖𝑇Θ𝑛𝑖 + 𝜀𝑖
𝑖 = 1, 𝑘 (8)

where the following are considered:

(i) 𝛾0 stands for the constant value of the meta-model
(equals the total mean of the experimental responses)

(ii) 𝑓𝑇(𝑐𝑖) represents the transpose vector of the linear
and nonlinear terms (quadratic and interactions) of
the control factor vector associated to the ith run, 𝑐𝑖

(iii) 𝛾 stands for the unknown coefficient vector of the
control variable terms of the meta-model

(iv) 𝑛𝑖 stands for linear terms of the noise factor vector at
the ith run

(v) 𝛿 stands for the unknown coefficient vector of the
noise variable terms of the meta-model

(vi) Λ and Θ are the unknown coefficients to describe,
respectively, the effect of noise variables in terms of
interaction with control factors and interaction with
themselves

(vii) finally, 𝜀𝑖 represents the error of themeta-model when
the ith response is evaluated

From Equation (8), mean and variance of the response are
computed under the hypothesis of 𝜀𝑖 independent with zero
mean:

𝐸 (𝑦𝑖) = 𝛾0 + 𝑓𝑇 (𝑐𝑖) 𝛾 + tr (ΘΛ) (9)

and

var (𝑦𝑖) = [𝛿 + Λ𝑇𝑓 (𝑐𝑖)]𝑇Φ[𝛿 + Λ𝑇𝑓 (𝑐𝑖)]
+ 2 tr {(ΘΦ)2} + 𝜎2𝜀

(10)

Usually, quadratic terms of noise factors are not investigated,
soΘ is null together with the trace computation of Equations
(9) and (10). Φ represents the noise variance-covariance
matrix. It is diagonal and it can be evaluated by a statistical
knowledge of the investigated process (e.g., Φ𝜄𝜄 = 𝜎2 = 1/9 if
99.7%of the materials are in a 6𝜎 tolerance field and the noise
levels of the DOE change from the coded values -1 and 1).

From these considerations we derive that the mean value
of the response depends only on the control variables while
the variance of the response is due to the noise factors both in
terms of their linear coefficients (𝛿) and of their interactions
with the control variables (Λ). A regression algorithm able to
find 𝛾0, 𝛾, 𝛿, and Λ allows to evaluate Equations (9) and (10)
finding the relevance of each term of the meta-model and, so,
the effects of the noise factors on the variance of the response.

3.2. Proposed Formulation for Robust Die Compensation.
To explore how an optimal compensated die may reduce
noise effects due to the tolerance of process variables, small
perturbations of the die shapemust be analyzed.The problem
is solved looking for a set of perturbations able to minimize
response scattering due to noise. According to Equation
(1), we can say that in such configuration a small noise
perturbation of the blank characteristics may change the
norm according to a linear superposition of the effects:

𝑒 (s ∗ +Δs) = 󵄩󵄩󵄩󵄩u𝑛𝑜𝑚 + Δu − 𝐺 (s ∗ +Δ𝑠)󵄩󵄩󵄩󵄩
= ‖Δu − 𝐺 (Δs)‖ . (11)

In these terms, the robust design approach is looking for
optimal compensated die through the search of a �s able to
minimize e.

Generally speaking, assuming 𝑘 shapes of deformation
able to compensate noise effects, the problem defined in
Equation (11) becomes

𝑒 (Δ𝑎𝑗) = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Δ𝑢 − 𝐺( 𝑘∑
𝑗=1

Δ𝑎𝑗w𝑗𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 (12)

Assuming as control factors a set of perturbations of the die
modal weights, �𝛼𝑗, common robust design strategies (e.g.,
Dual Response Surface) may be applied by deriving a set of
modified tools according to a DOE as shown in the example
of Figure 1.
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tool shape #1 -1 +1 

tool shape #2 -1 -1 

tool shape #3 +1 +1 

tool shape #4 +1 -1 

1 2

= s∗ + (Δ11 + Δ22)

= s∗ + (Δ11 + Δ22)

= s∗ + (Δ11 + Δ22)

= s∗ + (Δ11 + Δ22)

Figure 1: DOE scheme for die modification according to the
proposed approach.

In this example, the experimental plan analyzes control
factors that represent two global die modifications according
to the modal shapes 𝑤1 and 𝑤2. They are applied on the
optimal compensated shape, s∗, by a linear combination of
their die modal weights �𝛼1, �𝛼2 that change according to a
2-level full-factorial design (coded levels [−1, +1]). Doing so,
die geometrical continuity is guaranteed by the smoothness
of shape functions that may be affected only by the quality of
the meshes adopted in the FEA.

According to this example, the general workflow of the
procedure is described by the following steps:

(1) Build the compensated configuration of the tools
(target configuration) through the application of the
Shape Function optimization.

(2) Define the set of modal shapes as control factors and
perturb their weights according to a DOE (e.g., cen-
tral composite design for the Dual Response Surface
or crossed arrays for Taguchi’s method).

(3) Iteratively, for each run of the DOE,

(a) build other tools (blankholder and punch) by
offset and translation on the die elements of the
mesh

(b) check undercuts
(c) perform the simulation of the forming process
(d) coarsen the mesh of the formed part
(e) put constraints on the part and perform spring-

back simulation
(f) remesh the part in order to obtain a standard

mesh for all runs
(g) align the part to an absolute reference frame
(h) compute springback quality response able to

evaluate current shape distortion

(4) Finally, analyze the collected springback quality
responses to find the optimal solution according to
one of the Robust Design procedures.

If the Dual Response Surface is applied, a meta-model for the
mean and the variance of the process has to be fit according
to Equations from (8) to (10), and, then, the optimal point
may be found by a constrained minimization technique of the
MSE.

The general workflow of the procedure requires only two
major precautions: one related to the verification of possible

Blankholder

Guide Punch

Die

Figure 2: Test case: FEA nominal shape (on the left); FE model of
the tools (on the right).

undercuts and the other to the adoption of a proper quality
response that may be able to evaluate springback distortion.
Concerning the adoption of a proper springback quality
response, it is important to guarantee the significance of the
results. Although many formulations can be correlated to
FEA results [29], usually in die design and experimental val-
idation it is based on the final displacement after springback.
Depending on the complexity of the shape, it can be defined
by monitoring a set of relevant points (the most affected by
springback) or by monitoring the overall set of nodes. In the
latter case, final springback is computed as an averaged value
weighted with the element area of the mesh.

4. Test Case Description and FEA Set-Up

The proposed approach is here applied on a case study
derived from the head part of a B-pillar (Figure 2, on the
left), stamped from a Dual Phase (nominal yield stress equal
to 1100MPa) blank 1.5mm thick. The general workflow for
robust die compensationhas been implemented throughTCL
scripts in Hyperworks, adopting as FEA code LS-Dyna.

FEA set-up involves two steps: the first one is related
to the deep drawing simulation and the second one to the
springback solution. The first one has been made adopting
the explicit solver LS-DYNA according to the model shown
in Figure 2, on the right. The second one switched shell
formulation and the solver to the implicit solution.

In the deep drawing, all the components have been
meshed by rigid shell elements, except the blank that rep-
resents the only deformable part. During the computation,
its mesh is automatically refined where necessary (initial
number of elements 960; final number after remeshing
13473).The blankholder force has been evaluated by splitting
the total force that is currently applied to stamp the B-pillar,
according to a proportional value of the effective area of
the case study (final value: 350 kN). The punch load has
been applied through a prescribed rigid motion according
to stamping simulation practice. According to [5, 6, 39] and
considering that the adopted material is an AHSS, the plastic
behavior has been modeled by Chaboche’s formulation [34],
a combined isotropic-kinematic hardening model with six
parameters, reported in Table 1.

At the end of the deep drawing simulation, the tools are
removed and the final springback solution is obtained by the
implicit-solver computation. This simulation is made on a
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Table 1: Material parameters of the adopted combined isotropic-kinematic hardening model [34].

Hard1 (GPa) 𝛽 HardK1 (GPa) 𝛾1 HardK2 (GPa) 𝛾2
-60.000 150.0 1.200 5.00 88.000 150.00

Table 2: Die compensation by the shape function optimization: target configuration in terms of die modal weights.

𝛼1 𝛼4 𝛼5 𝛼7 𝛼8 𝛼9

-559.63 12.18 16.02 -82.21 -57.6 21.49

x
z

y

23

1
123

Figure 3:Nominal configuration before springback (bluemesh) and
after springback (redmesh). Triangles represent the 3 nodes with the
translational DOFs locked in the springback solution.

coarser mesh that has been assumed as the nodal reference
springback solution for the computation of the springback
quality response. It is an average value, which is weighted on
the element areas, of the nodal difference between current
and reference springback solution, after model repositioning
on an absolute reference frame.

Then, the quality response is computed as an average of
nodal values, weighted on the element area. Figure 3 shows
the nominal shape (the blue one) compared with its final
springback (the red one), which is going to be the target
solution for the die compensation described in the next
section.

Figure 3 also shows the symbols associated to the nodal
constraints applied to prevent rigid body motions (red trian-
gles). They consist of a set of zero displacement conditions
in x, y, and z directions on three nodes at the bottom of
the component. The same three nodes were also adopted to
define the absolute reference frame for the repositioning of
the modified sheet configurations on its nominal one.

5. Die Compensation: Results and Discussion

According to the formulation set in Section 2, only 6 shape
functions bring variations of the global shape, effectively.
Table 2 shows their values to compensate springback, while
Figure 4 shows a comparison of the final shape obtained
by die compensation (cyan surface), nominal shape (blue

Figure 4: Springback solution after die compensation: compensated
shape (cyan surface), original springback shape (red surface), and
nominal shape (blue surface).

surface), and original, uncompensated, springback shape (red
surface).

In terms of springback quality response, the compensa-
tion algorithm is able to reduce springback of 45%, with a
springback reduction at the most critical flange (on the front-
left of Figure 4) from an initial displacement of 20.1mm to a
final one of 11.3mm. Although the result could appear quite
distant from a complete compensation, actually it is very
close to the optimum, since there is a very sharp undercut
constraint, which prevents the algorithm to proceed further
in the direction of springback reduction.

Considering the obtained compensated shape from the
shape functions point of view, only three shape functions (𝛼1,𝛼7, 𝛼8) are the most effective on the shape variation from the
target to the compensated solution. It can be revealed com-
paring among them the magnitude of the die modal weights.
Figure 5 shows the associated modes, giving evidence of
how they concur to the final distortion after springback. In
particular, all of them affect the flange distortion, the first
mode and the eighth on the bottom of the shape, and the
seventh and the eighth mainly on the vertical areas.

Figure 6 shows an experimental comparison between the
compensated part and the nominal geometry (in this case,
the comparison has been focused outside the flange areas,
considering that theymust be cut before the assembly). Inside
the figure, at the vertical wall, the correction leads to a
maximum value of -1.55mm from the original springback
distance of 10.28mm.
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Table 3: DOE range of the modal weights assumed as control factors.

𝛼1 𝛼7 𝛼8

Lower bound -634.63 -157.21 -132.60
Upper bound -484.63 -7.21 0

Table 4: Coded levels adopted for control and noise variables according to the central composite design.

Coded level 𝛼1 𝛼7 𝛼8 𝜎𝑦 (GPa) t (mm)
-s -634.63 -157.21 -132.598 1.034 1.410
-1 -591.16 -113.74 -89.131 1.072 1.462
0 -559.63 -82.21 -57.598 1.100 1.500
1 -528.09 -50.67 -26.064 1.128 1.538
S -484.63 -7.21 0.000 1.166 1.590

1 = ３Ｂ；Ｊ？ 1 7 = ３Ｂ；Ｊ？ 7 8 = ３Ｂ；Ｊ？ 8

Figure 5: Modal shapes associated to the three most effective modal weights.
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Figure 6: Experimental comparison between compensated shape
and nominal shape.

6. Robust Design Application: Results

Starting from the compensation found in the previous sec-
tion, the interactions between die shape and blank’s scattering
have been studied, according to the Dual Response Surface
strategy explained in Section 3.2.

Considering the relevance of (𝛼1, 𝛼7, 𝛼8), they have been
assumed as control variables of the problem, leaving the
others fixed at the target values. Table 3 summarizes their
ranges, considered during the robust design optimization.

Theywere defined not sowide to preserve the preliminary
die compensation that may be seen as the first optimization
step to set the average behavior of the process to the target.

The investigated noise factors are concerned with blank
scattering: the initial yield stress, 𝜎𝑦 and the initial blank
thickness, t. Their variability has been set to 6% of the target
conditions, which are 1100MPa and 1.5mm, respectively.

Table 4 shows the values assigned in the DOE according
to the five coded values applied as requested in a central
composite design. Table 5 shows the central composite design
together with the springback quality response, Q, computed
at each run.

The meta-model derived from these runs is represented
by

𝑄 = 𝛾0 + 𝛾1𝛼12 + 𝛾2𝛼1 + 𝛾3𝛼27 + 𝛾4𝛼7 + 𝛾5𝛼28 + 𝛾6𝛼8
+ 𝛾7𝛼1𝛼7 + 𝛾8𝛼1𝛼8 + 𝛾9𝛼7𝛼8 + 𝛿1𝜎𝑦 + 𝛿2𝑡
+ Λ 11𝜎𝑦𝛼1 + Λ 12𝜎𝑦𝛼7 + Λ 13𝜎𝑦𝛼8 + Λ 21𝑡𝛼1
+ Λ 22𝑡𝛼7 + Λ 23𝑡𝛼8

(13)

It includes quadratic terms with interactions for the control
variables and linear terms for the noise factors together with
their interactions with the control variables.

Table 6 shows the regression coefficients of the meta-
model.

Table 6 shows that quadratic terms of the control factors
are relevant; 𝜎𝑦 is the most significant noise variable while
t, in the adopted range, is less effective; coefficient Λ11
demonstrates that 𝛼1 is the control variable with major
interaction with 𝜎𝑦.

These considerations are clearly explained by graphical
plots of the models related to the mean and the variance
of the quality response. They have been found according to
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Table 5: Central composite design and related springback quality response (Q).

Run 𝜎y t 𝛼1 𝛼7 𝛼8 Q (mm)
Baseline run (target conditions) 1 0 0 0 0 0 0.10

Two-level full factorial design

2 1 1 1 1 1 1.36
3 -1 1 1 1 1 0.58
4 1 -1 1 1 1 1.34
5 -1 -1 1 1 1 0.52
6 1 1 -1 1 1 0.41
7 -1 1 -1 1 1 0.64
8 1 -1 -1 1 1 0.43
9 -1 -1 -1 1 1 0.57
10 1 1 1 -1 1 1.33
11 -1 1 1 -1 1 1.44
12 1 -1 1 -1 1 1.18
13 -1 -1 1 -1 1 1.45
14 1 1 -1 -1 1 1.21
15 -1 1 -1 -1 1 0.98
16 1 -1 -1 -1 1 1.30
17 -1 -1 -1 -1 1 1.04
18 1 1 1 1 -1 1.14
19 -1 1 1 1 -1 1.51
20 1 -1 1 1 -1 1.46
21 -1 -1 1 1 -1 1.49
22 1 1 -1 1 -1 1.76
23 -1 1 -1 1 -1 1.73
24 1 -1 -1 1 -1 1.61
25 -1 -1 -1 1 -1 1.67
26 1 1 1 -1 -1 0.64
27 -1 1 1 -1 -1 0.62
28 1 -1 1 -1 -1 0.63
29 -1 -1 1 -1 -1 0.51
30 1 1 -1 -1 -1 0.73
31 -1 1 -1 -1 -1 0.79
32 1 -1 -1 -1 -1 0.76
33 -1 -1 -1 -1 -1 0.81

Axial runs

34 s 0 0 0 0 1.06
35 0 s 0 0 0 0.11
36 0 0 s 0 0 1.80
37 0 0 0 s 0 1.06
38 0 0 0 0 s 1.03
39 - s 0 0 0 0 1.03
40 0 - s 0 0 0 0.13
41 0 0 - s 0 0 0.85
42 0 0 0 - s 0 1.26
43 0 0 0 0 - s 1.97

Central point with noise

44 1 1 0 0 0 0.45
45 -1 1 0 0 0 0.45
46 1 -1 0 0 0 0.43
47 -1 -1 0 0 0 0.44
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Table 6: Regression coefficients of the response surface related to Q.

Main effects of control variables Effects of noise variables Interactions control-noise Variables𝛾0 0.530 𝛿1 0.043 Λ 11 0.093𝛾1 0.151 𝛿2 -0.002 Λ 12 0.004𝛾2 0.099 Λ 13 0.001𝛾3 0.126 Λ 21 -0.007𝛾4 0.015 Λ 22 -0.008𝛾5 0.226 Λ 23 0.003𝛾6 -0.036𝛾7 0.013𝛾8 0.140𝛾9 -0.343
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Figure 7: Model of the mean of 𝑄 as a function of 𝛼1 and 𝛼7 (𝛼8
coded level = 0). Plot is referred to the range (-2, 2) for both 𝛼1 and𝛼7.

Equations (9) and (10), where the variance-covariancematrix,Φ, has been defined under the hypothesis of having a 99.7%
probability of material properties in the assigned tolerance,
assumption that leads to a diagonal matrix with value equal to
1/9. Concerning the mean model, Figure 7 clearly shows the
parabolic behavior of 𝛼1 and 𝛼7, assuming 𝛼8 at the central
point level.

Figures 8 and 9 allow to understand the interactions 𝛼1-𝛼8 and 𝛼7-𝛼8, respectively. They appear nonlinear and with
increasing interaction moving away from the central point in
both directions.

The variance of the quality response, which has been
found according to Equation (10), reveals a significant
quadratic effect of 𝛼1 that is able to reduce noise effect, as
shown in Figure 10. It plots the effect of 𝛼1 on the standard
deviation, changing the other control variables on equal
levels, as shown in the legend. In this case, a minimum value
exists, at 𝛼1, nearby the coded level of -0.5. This condition
differs from that one of the compensated die, named as target
solution and shown in Figure 10 as a red point.

Figure 11 shows the interaction effects among control
factors in terms of parametric curves. In particular, 𝛼8 is not
significant while 𝛼7, suitably coupled with 𝛼1, may minimize
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Figure 8: Model of the mean of 𝑄 as a function of 𝛼1 and 𝛼8 (𝛼7
coded level = 0). Plot is referred to the range (-2, 2) for both 𝛼1 and𝛼8.

standard deviation. In fact, as shown in Figure 11 through
the red dotted lines that represent the lower value for 𝛼7, the
solution with 𝛼1 = 1 and 𝛼7 = 1 is worse than 𝛼1 = 1 and 𝛼7 = -1
while, in case of 𝛼1 = -1, the trend is reversed and the standard
deviation is improved. Assuming 𝛼1 at the center point, with𝛼7 = -1, the minimum standard deviation can be achieved.

7. Discussion

From the analysis of the standard deviation, it can be evinced
that the optimal die compensation not necessarily represents
a robust solution, according to the Robust Design meaning.
Through the modal shapes, assumed as control factors, it is
possible to understand how changes of the compensated die
may reduce noise variables effects.

In fact, combining mean and variance in aMSE function,
an analytical evaluation of the Robust Design condition may
be found. By the function fmincon implemented in Matlab,
the robust compensation is found, [−599, −7.21, 0]. Figure 12
shows a comparison between this “robust” die (green mesh)
and the initial compensated configuration (red one). Shape
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level. Standard deviation of the compensated die in red.

variations are mainly concentrated on the right flange and
on the bottom of the die. No undercuts are present and
shape continuity is preserved. Finally, confirmation runs
with planned change of the noise variables confirm that the
variance of the springback quality response is less than the
variance of the target configuration associated to the initial
die compensation.

8. Conclusion

In this paper, the die compensation principle has been
extended to Robust Design applications looking for optimal
diemodifications that are able to reduce springback scattering
of a compensated die, due to blank’s scattering. It has been
possible thanks to the die compensation procedure known
as Shape Function optimization. By means of a suitable basis
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Figure 11: Parametric curves of the standard deviation of springback
quality response,Q.

Figure 12: Comparison between Robust die (in green) and Com-
pensated die (in red).

of global shapes (the shape functions derived by modal anal-
ysis), this method allows to describe geometrical variations
of the tools according to global variables, the modal weights
associated to each shape function, thatmay easily describe the
correlation between die modification and process variables,
according to common Robust Design procedures.

The applicability of the proposed method has been
demonstrated by means of a test case, formed using an
AHSS blank (referable to a Dual Phase with nominal yield
stress at 1200MPa) with a nominal thickness of 1.5mm. The
preliminary die compensation, found applying the Shape
Function optimization, is able to reduce springback up to
45% by means of optimal values of 10 shape functions. A
preliminary validation test in the press-shop agrees with the
numerical solution highlighting the same kind of corrective
actions, on the same critical areas.

Dual Response Surface has been then applied to this com-
pensated die find robust conditions for springback scattering
due to initial yield stress and blank thickness (noise vari-
ables). As control variables, three global shape modifications
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have been adopted, according to the most significant shape
functions found during the preliminary die compensation.
Adopting noise scatter of 6%, a more robust configuration
for the die design has been found. The fitted model for
the mean response demonstrated a nonlinear behavior of
the three shape functions chosen as control variables, with
some important interactions. The preliminary compensation
represents a point inside the optimal area although it does not
agree neither with the global minimum of the mean model
nor with that of the variance. Analyzing both functions and
minimizing the related MSE, an optimal compromise can be
found according to small variations of the control factors.

Despite the adoption of a limited set of variables, the
application demonstrates that the Dual Response Surface,
if combined with the Shape Function optimization, may
be easily applied to understand the effects of geometrical
variations, reducing the efforts related to surface remodeling
and CAD interlacing. This is mainly due to the fact that each
shape function represents a global shape variation of themesh
model and it may guarantee by itself the class of the resulting
die surface. In particular, for the presented test case, the first
shape function represents the most effective variable for the
MSE together with its interaction with the seventh ones. Both
of them are related to flange distortion and vertical walls
nearby the edge of the components, where major springback
occurs due to the opening of the bendings.
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