23 research outputs found

    Gait stability at early stages of multiple sclerosis using different data sources

    Get PDF
    Background: People at early stages of multiple sclerosis have subtle balance problems that may affect gait stability. However, differences in methods of determining stability such as sensor type and placements, may lead to different results and affect their interpretation when comparing to controls and other studies. Questions: Do people with multiple sclerosis (PwMS) exhibit lower gait stability? Do location and type of data used to calculate stability metrics affect comparisons? Methods: 30 PwMS with no walking impairments as clinically measured and 15 healthy controls walked on a treadmill at 1.2 ms−1 while 3D acceleration data was obtained from sacrum, shoulder and cervical markers and from an accelerometer placed at the sacrum. The local divergence exponent was calculated for the four data sources. An ANOVA with group (multiple sclerosis and control) and data source as main factors was used to determine the effect of disease, data source and their interaction on stability metrics. Results: PwMS walked with significantly less stability according to all sensors (no interaction). A significant effect of data source on stability was also found, indicating that the local divergence exponent derived from sacrum accelerometer was lower than that derived from the other 3 sensor locations. Significance: PwMS with no evident gait impairments are less stable than healthy controls when walking on a treadmill. Although different data sources can be used to determine MS-related stability deterioration, a consensus about location and data source is needed. The local divergence exponent can be a useful measure of progression of gait instability at early stages of MS

    Effects of support surface stability on feedback control of trunk posture

    No full text
    This study aimed to examine the interactions of visual, vestibular, proprioceptive, and tactile sensory manipulations and sitting on either a stable or an unstable surface on mediolateral (ML) trunk sway. Fifteen individuals were measured. In each trial, subjects sat as quiet as possible, on a stable or unstable surface, with or without each of four sensory manipulations: visual (eyes open/closed), vestibular (left and right galvanic vestibular stimulation alternating at 0.25 Hz), proprioceptive (left and right paraspinal muscle vibration alternating at 0.25 Hz), and tactile (minimal finger contact with object moving in the frontal plane at 0.25 Hz). The root mean square (RMS) and the power at 0.25 Hz (P25) of the ML trunk acceleration were the dependent variables. The latter was analyzed only for the rhythmic sensory manipulations and the reference condition. RMS was always significantly larger on the unstable than the stable surface. Closing the eyes caused a significant increase in RMS, more so on the unstable surface. Vestibular stimulation significantly increased RMS and P25 and more so on the unstable surface. Main effects of the proprioceptive manipulation were significant, but the interactions with surface condition were not. Finally, also tactile manipulation increased RMS and P25, but did not interact with surface condition. Sensory information in feedback control of trunk posture appears to be reweighted depending on stability of the environment. The absolute effects of visual and vestibular manipulations increase on an unstable surface, suggesting a relative decrease in the weights of proprioceptive and tactile information.sch_phy233pub4593pub

    Assessing age-related balance deterioration: Visual or mechanical tasks?

    Get PDF
    Background: Mediolateral balance assessment (MELBA) comprises tracking of predictable and unpredictable targets moving at increasing frequencies, using centre-of-mass feedback. The mediolateral-balance-assessment was shown to be sensitive to subtle age-related balance deterioration. However, it has been suggested that performance during ground-level tasks can be more sensitive to balance deterioration. Methods: we developed a modified mediolateral-balance-assessment using tracking of surface translations with comparable waveforms (mechanical mediolateral-balance-assessment) to compare age sensitivity of the visual and mechanical mediolateral-balance-assessment, 15 older adults (68 SD 5 yr) and 12 young adults (30 SD 4 yr) performed both tasks. Phase-shift and gain between the CoM and either the visual target or the surface displacement for the visual and the mechanical mediolateral-balance-assessment, respectively, were calculated. To identify differences in tracking strategies between the visual and mechanical mediolateral-balance-assessment, phase-shift between trunk and leg angles was calculated. Findings: Overall, older adults performed worse than young across the predictable and unpredictable tracking and visual and mechanical tasks. Of all mediolateral-balance-assessment performance descriptors, a significant interaction between age and task (visual or mechanical) was only found for the mean phase-shift. Post-hoc comparisons revealed significant age differences in the visual but not in the mechanical mediolateral-balance-assessment. Significant differences in tracking strategies were found between visual and mechanical mediolateral-balance-assessment with a greater decoupling of trunk and legs during the mechanical than the visual mediolateral-balance-assessment. Interpretation: the visual mediolateral-balance-assessment was more sensitive to age-related balance deterioration than the mechanical mediolateral-balance-assessment, possibly because visual tracking elicits motor strategies that are more affected by ageing

    Frequency domain mediolateral balance assessment using a center of pressure tracking task

    No full text
    Since impaired mediolateral balance can increase fall risk, especially in the elderly, its quantification and training might be a powerful preventive tool. We propose a visual tracking task (VTT) with increasing frequencies (.3-2.0Hz) and with center of pressure as visual feedback as an assessment method. This mediolateral balance assessment (MELBA) consists of two tasks, tracking a predictable target signal to determine physical capacity and tracking an unpredictable target signal to determine sensorimotor integration limitations. Within and between sessions learning effects and reliability in balance performance descriptors in both tasks were studied in 20 young adults. Balance performance was expressed as the phase-shift (PS) and gain (G) between the target and CoP in the frequency domain and cut-off frequencies at which the performance dropped. Results showed significant differences between the MELBA tasks in PS and G indicating a lower delay and higher accuracy in tracking the predictable target. Significant within and between sessions learning effects for the same measures were found only for the unpredictable task. Reliability of the cut-off frequencies at which PS and G performance declined and the average values within cut-off frequencies was fair to good (ICC .46-.66) for the unpredictable task and fair to excellent for the predictable task (ICC .68-.87). In conclusion, MELBA can reliably quantify balance performance using a predictable VTT. Additionally, the unpredictable tasks can give insight into the visuomotor integration mechanisms controlling balance and highlights MELBA's potential as a training tool.publisher: Elsevier articletitle: Frequency domain mediolateral balance assessment using a center of pressure tracking task journaltitle: Journal of Biomechanics articlelink: http://dx.doi.org/10.1016/j.jbiomech.2013.08.018 content_type: article copyright: Copyright © 2013 Elsevier Ltd.status: publishe

    Gait stability reflects motor tracts damage at early stages of multiple sclerosis

    No full text
    Background: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its correlation with motor tract damage has not yet been established. Objective: To compare stability between PwMS and healthy controls (HCs) and determine associations between stability and diffusion magnetic resonance image (MRI) measures of axonal damage in selected sensorimotor tracts. Methods: Twenty-five PwMS (Expanded Disability Status Scale (EDSS) < 2.5) and 15 HCs walked on a treadmill. Stability from sacrum (LDE SAC), shoulder (LDE SHO) and cervical (LDE CER) was calculated using the local divergence exponent (LDE). Participants underwent a 7T-MRI brain scan to obtain fibre-specific measures of axonal loss within the corticospinal tract (CST), interhemispheric sensorimotor tract (IHST) and cerebellothalamic tract (CTT). Correlation analyses between LDE and fibre density (FD) within tracts, fibre cross-section (FC) and FD modulated by FC (FDC) were conducted. Between-groups LDE differences were analysed using analysis of variance (ANOVA). Results: Correlations between all stability measures with CST FD, between CST FDC with LDE SAC and LDE CER, and LDE CER with IHST FD and IHST FDC were significant yet moderate (R < −0.4). Stability was significantly different between groups. Conclusions: Poorer gait stability is associated with corticospinal tract (CST) axonal loss in PwMS with no-to-low disability and is a sensitive indicator of neurodegeneration

    Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis

    No full text
    Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS). Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS
    corecore