178 research outputs found

    On high moments of strongly diluted large Wigner random matrices

    Full text link
    We consider a dilute version of the Wigner ensemble of nxn random matrices HH and study the asymptotic behavior of their moments M2sM_{2s} in the limit of infinite nn, ss and ρ\rho, where ρ\rho is the dilution parameter. We show that in the asymptotic regime of the strong dilution, the moments M2sM_{2s} with s=χρs=\chi\rho depend on the second and the fourth moments of the random entries HijH_{ij} and do not depend on other even moments of HijH_{ij}. This fact can be regarded as an evidence of a new type of the universal behavior of the local eigenvalue distribution of strongly dilute random matrices at the border of the limiting spectrum. As a by-product of the proof, we describe a new kind of Catalan-type numbers related with the tree-type walks.Comment: 43 pages (version four: misprints corrected, discussion added, other minor modifications

    On Eigenvalues of the sum of two random projections

    Full text link
    We study the behavior of eigenvalues of matrix P_N + Q_N where P_N and Q_N are two N -by-N random orthogonal projections. We relate the joint eigenvalue distribution of this matrix to the Jacobi matrix ensemble and establish the universal behavior of eigenvalues for large N. The limiting local behavior of eigenvalues is governed by the sine kernel in the bulk and by either the Bessel or the Airy kernel at the edge depending on parameters. We also study an exceptional case when the local behavior of eigenvalues of P_N + Q_N is not universal in the usual sense.Comment: 14 page

    On universality of local edge regime for the deformed Gaussian Unitary Ensemble

    Full text link
    We consider the deformed Gaussian ensemble Hn=Hn(0)+MnH_n=H_n^{(0)}+M_n in which Hn(0)H_n^{(0)} is a hermitian matrix (possibly random) and MnM_n is the Gaussian unitary random matrix (GUE) independent of Hn(0)H_n^{(0)}. Assuming that the Normalized Counting Measure of Hn(0)H_n^{(0)} converges weakly (in probability if random) to a non-random measure N(0)N^{(0)} with a bounded support and assuming some conditions on the convergence rate, we prove universality of the local eigenvalue statistics near the edge of the limiting spectrum of HnH_n.Comment: 25 pages, 2 figure

    Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices

    Get PDF
    We study the fluctuations of eigenvalues from a class of Wigner random matrices that generalize the Gaussian orthogonal ensemble. We begin by considering an n×nn \times n matrix from the Gaussian orthogonal ensemble (GOE) or Gaussian symplectic ensemble (GSE) and let xkx_k denote eigenvalue number kk. Under the condition that both kk and nkn-k tend to infinity with nn, we show that xkx_k is normally distributed in the limit. We also consider the joint limit distribution of mm eigenvalues from the GOE or GSE with similar conditions on the indices. The result is an mm-dimensional normal distribution. Using a recent universality result by Tao and Vu, we extend our results to a class of Wigner real symmetric matrices with non-Gaussian entries that have an exponentially decaying distribution and whose first four moments match the Gaussian moments.Comment: 21 pages, to appear, J. Stat. Phys. References and other corrections suggested by the referees have been incorporate

    Stein's Method and Characters of Compact Lie Groups

    Full text link
    Stein's method is used to study the trace of a random element from a compact Lie group or symmetric space. Central limit theorems are proved using very little information: character values on a single element and the decomposition of the square of the trace into irreducible components. This is illustrated for Lie groups of classical type and Dyson's circular ensembles. The approach in this paper will be useful for the study of higher dimensional characters, where normal approximations need not hold.Comment: 22 pages; same results, but more efficient exposition in Section 3.

    Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process

    Full text link
    Consider the zero set of the random power series f(z)=sum a_n z^n with i.i.d. complex Gaussian coefficients a_n. We show that these zeros form a determinantal process: more precisely, their joint intensity can be written as a minor of the Bergman kernel. We show that the number of zeros of f in a disk of radius r about the origin has the same distribution as the sum of independent {0,1}-valued random variables X_k, where P(X_k=1)=r^{2k}. Moreover, the set of absolute values of the zeros of f has the same distribution as the set {U_k^{1/2k}} where the U_k are i.i.d. random variables uniform in [0,1]. The repulsion between zeros can be studied via a dynamic version where the coefficients perform Brownian motion; we show that this dynamics is conformally invariant.Comment: 37 pages, 2 figures, updated proof

    Some Universal Properties for Restricted Trace Gaussian Orthogonal, Unitary and Symplectic Ensembles

    Full text link
    Consider fixed and bounded trace Gaussian orthogonal, unitary and symplectic ensembles, closely related to Gaussian ensembles without any constraint. For three restricted trace Gaussian ensembles, we prove universal limits of correlation functions at zero and at the edge of the spectrum edge. In addition, by using the universal result in the bulk for fixed trace Gaussian unitary ensemble, which has been obtained by Go¨\ddot{o}tze and Gordin, we also prove universal limits of correlation functions for bounded trace Gaussian unitary ensemble.Comment: 19pages,bounded trace Gaussian ensembles are adde

    Deformations of the Tracy-Widom distribution

    Full text link
    In random matrix theory (RMT), the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists in removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristc of extreme values of an uncorrelated sequence, is obtained.Comment: 9 pages, 1 figur

    Non-colliding Brownian Motions and the extended tacnode process

    Full text link
    We consider non-colliding Brownian motions with two starting points and two endpoints. The points are chosen so that the two groups of Brownian motions just touch each other, a situation that is referred to as a tacnode. The extended kernel for the determinantal point process at the tacnode point is computed using new methods and given in a different form from that obtained for a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the extended kernel is also different from that obtained for the extended tacnode kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the correlation kernel for a finite number of non-colliding Brownian motions starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded and many typos correcte
    corecore