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Abstract We study the fluctuations of eigenvalues from a class of Wigner random matrices
that generalize the Gaussian orthogonal ensemble.

We begin by considering an n x n matrix from the Gaussian orthogonal ensemble (GOE)
or Gaussian symplectic ensemble (GSE) and let x; denote eigenvalue number k. Under the
condition that both k£ and n — k tend to infinity as n — oo, we show that x; is normally
distributed in the limit.

We also consider the joint limit distribution of eigenvalues (x,, ..., x,) from the GOE
or GSE where ky,n — k,, and k; 1 — k;, 1 <i <m — 1, tend to infinity with n. The result in
each case is an m-dimensional normal distribution.

Using a recent universality result by Tao and Vu, we extend our results to a class of
Wigner real symmetric matrices with non-Gaussian entries that have an exponentially de-
caying distribution and whose first four moments match the Gaussian moments.

Keywords Wigner random matrices - Gaussian ensembles - Gaussian fluctuations -
Generalized central limit theorem

1 Introduction and Formulation of Results

In this paper, we study the classical ensemble of random matrices introduced by Eugene
Wigner in the 1950s, [27]. In particular, we will consider Wigner real symmetric matrices
and Wigner Hermitian matrices. We begin with the real symmetric case.

1.1 Real Symmetric Wigner Matrices

Following Tao and Vu in [23], we define a class of Wigner real symmetric matrices with
exponential decay.
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1046 S. O’Rourke

Definition 1 (Wigner real symmetric matrices) Let n be a large number. A Wigner real
symmetric matrix (of size n) is defined as a random real symmetric n x n matrix M, =
(mij)lﬁi,an where

— For 1 <i < j <n, m;; are i.i.d. real random variables.

— For 1 <i <n, m;; arei.i.d. real random variables.

— The entries m;; have exponential decay i.e. there exists constants C, C’ > 0 such that
P(|m;;| > t€) <exp(—t), forall t > C'.

The prototypical example of a Wigner real symmetric matrix is the Gaussian orthogonal
ensemble (GOE). The GOE is defined by the probability distribution on the space of n x n
real symmetric matrices given by

PH) = CPe 5T qy )

where 8 =1 and dH refers to the Lebesgue measure on the @ different elements of the
matrix. So for a matrix H = (h;;)1<;, j<, drawn from the GOE, the elements

{hij; 1 <i<j=<n}

. . . . . 1+5;;
are independent Gaussian random variables with zero mean and variance —-*.

1.2 Wigner Hermitian Matrices
Similar to the real symmetric case, we define Wigner Hermitian matrices.

Definition 2 (Wigner Hermitian matrices) Let n be a large number. A Wigner Hermitian
matrix (of size n) is defined as a Hermitian n x n matrix M, = (m;;)<;, j<, Where

— {Rem;j,Imm;; : 1 <i < j <n} are a collection of i.i.d. real random variables.

— For 1 <i <n, m;; are i.i.d. real random variables.

— The entries m;; have exponential decay i.e. there exists constants C, C’ > 0 such that
P(|m;;| > t€) <exp(—t), forall t > C'.

The classical example of a Wigner Hermitian matrix is the Gaussian unitary ensemble
(GUE). The GUE is defined by the probability distribution given in (1) with 8 =2, but on
the space of n x n Hermitian matrices. Thus for a matrix H = (h;;)i<;, j<, drawn from the
GUE, the n? different elements of the matrix,

{Reh;j;1<i<j<n,Imh;j;1=<i<j=<n}
. . . . . 148
are independent Gaussian random variables with zero mean and variance %.
1.3 Gaussian Symplectic Ensemble

Historically, quaternion self-dual Hermitian Wigner matrices have not been studied. We
will, however, introduce the Gaussian symplectic ensemble (GSE). The GSE is defined by
the probability density given in (1) with 8 = 4, but on the space of n x n quaternion self-dual
Hermitian matrices. For a matrix H = (h;;)<;, j<, drawn from the GSE, there are n(2n — 1)
distinct real members of the matrix,

Q1 <j<k<nhf1<j<k<nfori=123}
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where each quaternion entry is given by
0 1 2 3
hi=hQ +hi)er +hes+hes.
Here {1, e}, e;, e3} denotes the standard quaternion basis with the usual multiplication table,

ef =e§ =e§ =—1 ejep=—ere; =e3,

€163 = —e3e) =€ e1ey = —epep =es.

The entries are again independent Gaussian random variables with zero mean. For j < k,

hi’,g has variance % foreachi =0,1,2,3 and h;.(j).) has variance i.

1.4 Distribution of Eigenvalues for the Gaussian Ensembles

In each of the Gaussian ensembles above, there is an induced measure of the corresponding
n real eigenvalues x;. The induced measure can be calculated (see Mehta’s book, [17]) and
it’s density is given by

1 B 2.2
®) — B =L Gi+xd)
pnﬂ (xl,...,xn)—z(ﬂ) l_[ |xi_xj| e 2Oty

nool<i<j<n

where 8 = 1,2, or 4 corresponds to the GOE, GUE, or GSE, respectively and Z#) is a
normalizing constant.

Since the spectrum is simple with probability 1, we can further order the eigenvalues so
that x; < x, < -+ < x,,. This ordering gives the probability density p{f)(x1, ..., x,) of the
ordered eigenvalues on the space

RY g ={(x1, ..., %) 1 X1 <+ <X}
Here
PO x1s . x) =P (x, . x),

We can define the correlation functions for the eigenvalues as

!
®B) n B
Xlyouey Xp) = ————— X1y eeoy Xp)dXppy - -dx,.
Pn,k(l ©) n k)!/ﬂwk Dy (X1 Ydxy

In the case of the GUE, the eigenvalues form a determinantal random point process. In
this case,

oA, ., x) = det(K, (i, x)E ),
where the kernel K, (x, y) is given by

n—1

Ku(x.y) =Y ¢i(0)gi(p)e 20707

i=0

and ¢; are the orthonormal Hermite polynomials, i.e. fR i (x)p; (x)e*"zdx = §;;. All these
results and more can be found in Mehta’s book, [17] as well as Deift’s books, [3] and [4].
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1048 S. O’Rourke

1.5 Wigner’s Semicircle Law

An important result regarding Wigner random matrices is the famous semicircle law. Denote
by p, the semicircle density function with support on [—20, 207],

V462 —x2, |x| <20,

I )
pa(x)—[o

, |x| > 20.

Theorem 1 (Semicircle Law) Let M, = (m;;)i<; j<n be a Hermitian Wigner matrix where
m;; has variance o2 forl1<i<j<n.Ifx) <x,<---<x, denote the ordered eigenvalues
ofﬁM,l, then as n — 00,

1 X
Hziznin=x)— [ pma
n —20

almost surely where #{.} denotes the number of elements in the set indicated.

A similar result holds as well for real symmetric Wigner matrices. For a discussion of
such results as well as a proof of Theorem 1 see [1, 18], and [27].

1.6 Main Results

In [14], Gustavsson studies the distribution of eigenvalue number k, x;, of the GUE when
both k and n — k tend to infinity as n — oo. For example, if k = n — logn, then for large
values of n, x; is relatively close to the right edge of the spectrum. As another example,
consider when k = n/2. In this case, x; is in the middle of the spectrum. In each case,
Gustavsson showed that x; is normally distributed in the limit (see Theorems 2 and 3 below
when B =2and m = 1).

Gustavsson also considers the joint distribution of several eigenvalues (xg,, ..., Xz, )
from the GUE where k|, n — k,, and k;y; — k;, 1 <i <m — 1, tend to infinity with n.
In this case, Gustavsson showed that the limiting distribution is an m-dimensional normal
distribution (see Theorems 2 and 3 below when 8 =2 and m > 1).

In recent months, there have been a number of universality results for Wigner matri-
ces. In particular, it was shown that in the limit as n — oo, the statistical properties of m
eigenvalues from a Wigner matrix with exponential decay are independent of the proba-
bility distribution of the matrix entries (Mehta discusses the universality conjecture in his
book, [17], see Conjectures 1.2.1 and 1.2.2). For further details see results by Tao and Vu
in [23] and [24], results by Erdss, Schlein, and Yau, in [6-8], and [9], and combined results
by Erdds, Ramirez, Schlein, Tao, Vu, and Yau in [10].

Among their many results in [23] and [24], Tao and Vu prove that in the limit as n — oo,
the fine spacing statistics for a Wigner random matrix are only determined by the first four
moments of the entries. As a consequence, Tao and Vu extend Gustavsson’s results for the
GUE to a class of Hermitian Wigner matrices with non-Gaussian entries whose first four
moments match the Gaussian moments (see Corollary 1 below).

In this paper, we extend Gustavsson’s results for the GUE to the GOE and GSE. Then
the powerful machinery developed by Tao and Vu generalizes our results to a class of real
symmetric Wigner matrices with non-Gaussian entries.
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Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices 1049

Remark 1 In [25], Tracy and Widom studied the distribution of the smallest and largest
eigenvalues in the GUE. Later in [26], they extended the result to include the smallest and
largest eigenvalues in the GOE and GSE.

For the theorems below we define
2 t
G(t)=—/ V1—x2dx —-1<tr<]l.
T J

Following Gustavsson’s notation, we write k(n) ~ n to mean that k(n) = h(n)n’ where
h is a function such that, for all € > 0,

h(n

nG

—0 and h(n)n° — oo
as n — oo.
1.6.1 Results for the Gaussian Ensembles

Below we present the main theorems which extend Gustavsson’s results to the GOE and
GSE.

Theorem 2 (The bulk) Let x; < x; < --+ < x,, be the ordered eigenvalues from a random
matrix drawn from the GOE, GUE, or GSE. Consider {x;, }7", such that 0 < k; — ki1 ~ n%,
0<6;,<1,and kn—’ — a; € (0, 1) as n — 0. Define s; = s; (k;, n) = G~ (k; /n) and set

Xy, — 8iv/2n

,‘—_71 I1=1,...,m
ogn 1/2
(2)

B(l—sin

where 8 =1, 2,4 corresponds to the GOE, GUE, or GSE. Then as n — 00,

IP)[)(1 Sslw-wxm ng] I @A(Els---v‘i:m)

where @, is the cdf' for the m-dimensional normal distribution with covariance matrix
Ajj=1—max{b;:i <k <j<m}ifi<jand A;; =1.

Theorem 3 (The edge) Let x; < x, < -+ < x,, be the ordered eigenvalues from a random
matrix drawn from the GOE, GUE, or GSE. Consider {x,_,}/_, such that k; ~ n” where
O<y<landO<kiyg—ki~n% 0<6; <y.Set

Xnty — N20(1 — (ZE)23)
X, = 42 i=1,....,m

1 273 _2logki ~1/2
((1271) / ﬂn1/3k£/3) /
1

where 8 =1, 2,4 corresponds to the GOE, GUE, or GSE. Then as n — 00,

P[Xl SE]""?X}’H ng]—>¢A(§l""vsm)

where @ 4 is the cdf for the m-dimensional normal distribution with covariance matrix

Ai,_i:1—;max{9k:i5k<j<m}ifi<jandA,,,-:1.

! Cumulative distribution function.
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1050 S. O’Rourke

Remark 2 The GUE (8 = 2) case in Theorems 2 and 3 was shown by Gustavsson in [14].

Remark 3 In the case m = 1, Theorem 2 can be stated as follows. Set t = t(k,n) =
G~'(k/n) where k = k(n) is such that k/n — a € (0,1) as n — oo. If x; denotes eigen-
value number k in the GOE, GUE, or GSE, it holds that, as n — oo,

— t4/2
LW 7/2 — L N, 1)
(2,3(1—12)n)

in distribution where 8 = 1, 2, 4 corresponds to the GOE, GUE, or GSE.

Remark 4 In the case m = 1, Theorem 3 can be stated as follows. Let k be such that k — oo
but % — 0 as n — oo and let x,,_; denote eigenvalue number n — k in the GOE, GUE, or
GSE. Then it holds that, as n — oo,

Sk = V2n(1 = ()

1 2logk
((m)z/3 ﬁnl/%%gm )2

— N, 1)

in distribution where 8 = 1, 2, 4 corresponds to the GOE, GUE, or GSE.

Remark 5 One can omit the assumption that k; /n — a; in Theorem 2 and the conclusion
still holds. To see this, first consider the case m = 1. Let x; denote a sequence of eigenvalues
from the bulk with k = k(n) (where k/n does not necessarily converge as n — 00). Since
k/n < 1, there exists a subsequence, say k" = k(n;), such that k’/n; — a as I — oo for some
a € (0,1). By Theorem 2, the centered and scaled eigenvalues from the subsequence x;/
converge to the standard normal distribution. It follows that every subsequence has a further
subsequence which converges in distribution to the standard normal. Therefore, the entire
sequence must converge in distribution to the standard normal.

A similar argument allows one to omit the assumption that k; /n — a; in the case m > 1.

1.6.2 Results for Wigner Matrices

In [23] and [24], Tao and Vu extend Gustavsson’s results for the GUE to a more general
class of Hermitian Wigner matrices.

Corollary 1 (Tao, Vu; Hermitian Wigner Matrices) The conclusions of Theorems 2 and 3
also hold with B =2 when x; < x, < --- < Xx,, are the ordered eigenvalues of any other
Wigner Hermitian matrix M, = (m;;)1<i j<n where the following moment conditions hold:

— Rem;; and Imm;; have mean 0 and variance 1/4 for 1 <i < j <n.
— my; has mean 0 and variance 1/2 for 1 <i <n.

E((Rem;;)*) =E((mm;;)*) =0for1 <i < j <n.

E((Remij)4) = E((Immij)“) =3/16for1 <i < j<n.

In a similar fashion, we use Tao and Vu’s Four Moment Theorem (see [23] and [24]) to
extend our results to a more general class of real symmetric Wigner matrices.

Corollary 2 (Real Symmetric Wigner Matrices) The conclusions of Theorems 2 and 3 also
hold with B =1 when x|y < x, < --- < Xx, are the ordered eigenvalues of any other real
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Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices 1051

R . . 148;;
symmetric Wigner matrix M,y = (m;;)1<i j<n Where m;; has mean 0 and variance —** for

l<i<j<nandE(m;)=0,Em},)=3/4for1<i<j<n.

The proof of Corollary 2 is nearly identical to the proof of Corollary 19 in [23] and we
omit the details here. For the multidimensional cases, see Remark 20 in [23].

Remark 6 1t is also possible to consider a quaternion self-dual Hermitian n x n matrix
M, = (mj§)1<jk<n Such that

0 1 2 3 .
m :mi.k) +m§k>e| —l—m;k)ez +m;k)e3, 1<j<k=<n,

— 3, ® :
mjj=m;;, 1=<j<n

where {m(jik) :1<j<k<n,i=0,1,2,3} are i.i.d. real random variables and {m&‘? 1<
J <n} are i.i.d. real random variables. Such an ensemble of matrices would generalize the

GSE, but historically have not been studied.

Remark 7 In order for eigenvalues x; and x,, in the bulk to be independent in the limit, it
must be the case that |k — m| ~ n.

2 Limiting Distribution of a Single Eigenvalue in the GOE and GSE

In this section, we will prove Theorems 2 and 3 for the GOE and GSE in the case m =1
(see Remarks 3 and 4). Although we prove the general case for any m > 1 in Sect. 3, we
have found it instructive to start with the one-dimensional case.

2.1 A Central Limit Theorem

In the proof of the GUE case of Theorems 2 and 3, Gustavsson relies on the fact that the
GUE defines a determinantal random point process. Gustavsson utilizes a theorem due to
Costin, Lebowitz, and Soshnikov ([2, 16], and [21]). Let #gug, () denote the number of
eigenvalues (from an n x n matrix drawn from the GUE) in the subset I C R.

Theorem 4 (Costin-Lebowitz, Soshnikov) If Var(#gug, (I,)) — 00 as n — 0o, then

#cug, (In) — El#cug, (1,)]
Var(#cug, (1))

— N(@©,1)

in distribution as n — 0.

Remark 8 We stated the theorem here in terms of the GUE, but the result is actually more
general and holds for any sequence of determinantal random point fields. We state the more
general version of this result and give a proof in Appendix B (see Theorem 7).

We begin by proving a version of Theorem 4 for the GOE. To do this, we utilize the fact

that Gustavsson already proved the GUE case of Theorems 2 and 3 in [14] and a result by
Forrester and Rains in [12] that relates the eigenvalues of the different ensembles.
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1052 S. O’Rourke

Theorem 5 (Forrester-Rains) The following relations hold between matrix ensembles:
GUE, =even(GOE, UGOE, ),

1
GSE, =even(GOEy,) - ﬁ
Remark 9 The result by Forrester and Rains in [12] is actually much more general. Here we
only consider two specific cases.

Remark 10 The multiplication by % denotes scaling the (2n + 1) x (2n 4+ 1) GOE matrix

by a factor of %

Remark 11 The first statement can be interpreted in the following way. Take two indepen-
dent matrices from the GOE: one of size n x n and one of size (n+ 1) x (n+1). Superimpose
the eigenvalues on the real line to form a random point process with 2n 4 1 particles. Then
the new random point process formed by taking the n even particles has the same distribution
as the eigenvalues of an n x n matrix from the GUE.

Remark 12 The first relation was originally conjectured in 1962 by Dyson for the circular
unitary ensemble and the circular orthogonal ensemble (see [5]). It was proven the same
year by Gunson in [13].

We will also need the following result.

Lemma 1 Let {X,} and {Y,} be sequences of random variables where X, and Y, are i.i.d
foreachn e N. If X,, + Y, —> N(0, 2) in distribution, then X, —> N (0, 1) in distribution.

Proof We wish to show that {X,} is tight and that every subsequence {X,, } has a further
subsequence {X”k,} such that X,,kl — N(0, 1) in distribution as / — co. We proceed as
follows:

— We will show that {X,} and {Y,,} are tight. Notice that since X, and Y, are i.i.d for each
n € N, it is enough to just show {X,} is tight.

— Assuming {X,} is tight, we can conclude that every subsequence {X,,} has a further
subsequence {X,,k[} that converges in distribution. Since X, and Y,, are i.i.d, we have that

E[e”(X"lirZ’kl )] = (]E[e”x”kt ])2 — e asi—s oo,
by assumption. Thus, we can conclude that every subsequence {X,, } has a further subse-
quence {X, K } that converges in distribution to N (0, 1).

— This would complete the proof, for if X, 4 N(0, 1) in distribution, then there exists
€ >0, t eR, and a subsequence {X,, } such that

|E[e"¥m] — e7%| > €.

But this is a contradiction since there is a further subsequence {Xnk]} that converges in
distribution to N (0, 1).
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All that remains is to show that {X,,} is tight. Let € > 0. By takingboth M > Oandn > N
large,

M M M\ 7
e>]P’(X,,—|—Y,,>M)2P(X,,>—,Y,,>—>:|:P<Xn>—>] .

2 2 2
Similarly,

M M M\ 7T

e>PX,+Y,<—M) EP(—X,, > IR -Y, > 7) = [P(—X,, > 7)] .
Thus,
M
IP)(|Xn| > 7) <2e foralln>N
and the result follows. O

Lemma 2 [f Var(#gyg, (I,)) = 00 as n — 00, then

#oE, (1) — El#coE, (1,)]
2Var(#cug, (In))

—> N, 1)

in distribution as n — 0.

Proof By Theorem 5, we have that

1
#oue, (1) = 5 [#60E, (In) + #60E,,, (In) + & (1) |

where &, (1,) takes values in {—1, 0, 1}. Thus by Cauchy’s interlacing theorem (see Lemma 7
in Appendix A), we can write,

1
#cug, (1) = 3 [#60E, (1) + #oor, (I) + &, (1) ] 2

where we obtain GOE], from GOE, | by considering the principle submatrix of GOE,,
and &/ (1,) takes values in {—2, —1, 0, 1, 2}. Note that #g0g, (1,) and #cog, (1) are indepen-
dent because GOE,;; and GOE, denote independent matrices from the GOE. By taking
expectation on both sides of (2) we obtain

1
El#cug, (In)] = 2 [El#cor, (1)1 + El#cog, (1)1 + E[&, (1,)]] 3

Finally we subtract the expectation and divide by the standard deviation on both sides of (2)
to obtain

ﬁ#GUEn () — Elftgue, (1)1 _ #gok, (1) — El#tgor, (1]
Var(#cug, (1)) 2Var(#gug, (1))
#cor, (In) — El#gog, (1,)]
2Var(#cug, (In))
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1054 S. O’Rourke

+ ‘i:y/l(]n) - E[E,;(In)]
2Var(#cug, (1))

=X,+Y,+e€,.
The left hand side converges to N (0, 2) by Theorem 4 and

4
ley] < —— —>0 almost surely as n — oo.
2Var(#cug, (1))

Therefore by Lemma 1, X,, — N (0, 1) in distribution as n — oco. O
Remark 13 As a consequence of (3), we have that for any subset / C R,

El#cug, (D] = El#cog, (1] + O(1). 4)
2.2 Gustavsson’s Calculations for the GUE
We will also need some calculations provided by Gustavsson in the following lemmas.

Lemma 3 (Gustavsson) Let t = t(k, n) be the solution to the equation
2 t
n—/ V1—x2dx =k
T J

where k = k(n) is such that k/n — a € (0, 1) as n — oo. The expected number of eigenval-
ues from the GUE in the interval

/1
I, = |:«/2nt+x ﬂ,oo)
2n

El#ue, (1)1 =n —k — 3\/(1 —)logn + 0 (l°g”> :

n

is given by

Lemma 4 (Gustavsson) The expected number of eigenvalues in the interval I, =
[v/2nt, 00), where t — 1~ as n — o0, is given by

4:/2
El#cug, (I,)] = 3‘—7{:1(1 — 1>+ 0(1).

Lemma 5 (Gustavsson) Let § > 0 and suppose that t, which may depend on n, is such
that —1 +8 <t < 1 and n(1 — t)*>’*> — 00 as n — oo. Then the variance of the number of
eigenvalues from the GUE in the interval I, = [t~/2n, 00) is given by

1
Var(icu, (In) = 5 log[n(1 — 0211+ n(n))

where n(n) — 0 as n — oo.
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2.3 Proof of Main Results
We now prove the main results.

Proof of Theorem 2 for the GOE Set

12
1n=[[m+g<2(11"_%) ,oo)_

£

A 112

and obtain

By Lemma 3 and (4) we can take x =

El#cog, (1)l =n —k — %v (1—t*logn+ 0 (10%) +0()
=n—k— gw/logn + 0(1).

Combining this with Lemma 5 we get

P X — t4/2n <t|=P|x <t\/ﬂ+$ logn 1/2
(Joen_yip =5 | TS 2(1 —2)n

2(1—2)n

= P[#cog, (I,) <n —k]

_p [#GOE,I (1,) — El#or, (1)1 _ n —k — Elfigoe, (1,)]

<
v 2Var(#cug, (1)) = /2Var(#gug, (1))

_p #cok, (In) — El#cog, (1,)]
2Var(#gug, (1))

§$+€(n):|

where €(n) — 0 as n — co. By Lemma 2 the conclusion follows.

Proof of Theorem 3 for the GOE Set

1/2
3wk 1\ 2logk
L=|van[1- (== — ) == 00 ).
[ n( (4ﬁn) >+((12ﬂ> PIETEEl B

By Lemma 4 and (4) we have that

44/2
El#coE, (I.)] = %n(l -2+ 00)

3k \? 1 1\ logk 2
r=1-— +— (= £.
4/2n J/n \\ 127 nl/3k2/3

Combining this with Lemma 5 we get

where
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1056 S. O’Rourke

. [xnk —V2n(1 = (ZE)) ES}

1 2logk
((E)ZB’LI/;’;B)I/Z

/2
3wk \** 1\ 210k \'
=t == () )+ (o) )
=P [#cog, (I,) < k]

. {#Gom (1,) = Elttgos, (1)] _ k — El#cor, (1,)] }

V2Var(#ou, (1)) /2Var(#cug, (In))

_ {#GOEH (1) — Elttcos, ()]

2Var(#cug, (1,))

where €(n) — 0 as n — co. By Lemma 2 the conclusion follows. O

§$+emq

Proof of Theorems 2 and 3 for the GSE Let x; < x, < --- < x, denote the ordered eigen-
values of an n x n matrix from the GSE and let y; < y, < --+ < y,,4+1 denote the ordered
eigenvalues of an (2n + 1) x (2n 4+ 1) matrix from the GOE. By Theorem 5 it follows
that x;, = V—j% in distribution and hence the result follows by the GOE case of Theorems 2
and 3. ]

3 Joint Limiting Distribution of Several Eigenvalues in the GOE and GSE
3.1 A Multidimensional Central Limit Theorem
For the multidimensional case, we will need the following theorem, [22]:

Theorem 6 (Soshnikov) Let {11, ..., 1%} be a family of Borel subsets of R, disjoint
for any fixed n, with compact closure. Suppose

k

Var Zaj#GUEn (I,Ej)) Oll,...,OlkER
j=1

grows to infinity with n in such a way that

k
Var (#GUE” (I,fi))) = O | Var Zaj#GUE,, (I,Ej)) 5)
j=1

for any 1 <i <k. Then the central limit theorem holds:
Zl;:l o #GuE, 1) - E[lezl o #GUE, ()]

A —> N(0, 1)
\/Var(zl;:l ajttcue, (Ih))

in distribution.
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Remark 14 The theorem in [22] is more general than the theorem stated here. We state a
more general version of this result and give a proof in Appendix B (see Theorem 8).

Remark 15 In general, if {X{", ..., X%}, is a family of random variables and

Z];:I “./Xi(lj) - E[Zl;:l osz,(,j)]
(Var(Yh_ o X,7)1/2

converges to a normal distribution as n — oo for all ay, ..., € R, then XV, ..., X% are
jointly normally distributed in the limit, [15].

Remark 16 1f (5) holds for every «a, ..., a; € R, then the random variables

#our, IV, ... #gug, (IV)

are jointly normally distributed in the limit.
For the GOE, we will prove the following lemma.

Lemma 6 Let {IV, ..., I,fk)}ff):l be a family of Borel subsets of R, disjoint for any fixed n,
with compact closure. Suppose

Zaj#GUEn I(l) al,...,akeR
grows to infinity with n in such a way that
k
Var (#6ug, (1)) = O | Var Z ajtaue, (1) (6)

forany 1 <i <k. Then for the GOE:

Zﬁ:‘ oj#cor, (") — E[Z];=1 aj#co, (I")]

- A —> N(0, 1)
J2Var(Sh_ e, (1)
in distribution.
Proof By following the proof of Lemma 2, we can write
Za #GUE” I(J) Za] #GOE,, ) + #gom, (I(J)) +& (I(J))) (7

where £’ (1) takes values in {—2, —1,0, 1, 2}. Define

Yk o (#or, (1)) — El#cor, (1))
\/ZVar(Z’;zl o #aue, (I47))

X, =

@ Springer



1058 S. O’Rourke

Y e aor, (14”) = Eltoor, (1))
\'/2Var(Z’;:1 a i #GuE, L9y
e efn (L) — BIY oy (147)]

\/2var(2];=1 aj#ouE, (1)) '

Yn =

n=

Notice that for each n € N, X,, and Y, are i.i.d. By equation (7) and Theorem 6, we have that
X, + Y, +¢€, is equal to

ﬁzl}:l o;#aur, (17) — EIY5_ o #aue, (7))

: — N(@©,2)
\/ Var(Y)_, o #aus, (1)

where the equality is everywhere and the convergence is in distribution. Since

k
43 o
len] < =

< ; — — 0 asn— o0
\'/ZVar(Zj:l ajttcur, (Ih))

almost surely, Lemma 1 implies that X,, —> N (0, 1) in distribution as n — oo. O

Remark 17 If (6) holds for every «y, ..., o € R, then the random variables
#GOEn (IVEI)) 1t #GOEn (I,Ek))
are jointly normally distributed in the limit.

3.2 Proof of Main Results

Proof of Theorem 2 for the GOE Let k;, s;, 6;, and X; as in the formulation of Theorem 2.
Let &y, ..., &, € R and define

| 12
(oo () ),

2(1 — slz)n

; logn 172 logn 172
1V =52 i\ =>——— ) Si—1V2 i-t |\ 57—
" (S nd (2(1 - sf)n) Si-1V2n + iy 2(1 — sizfl)n

for 2 <i < m. For convenience, let

k
Suk = Z#GOE,, (I,fj)) ,
=1

k
O’ik = 2Var Z#GUE" (In(]))
j=1

for 1 <k < m. Then we have that (for n large enough)

Sn,l - E[Sn,l] < n— k] _]E[Sn,l] 1 <l < mj|

On,l Oyl

P[legla-“axrniSm]:]P[
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‘We now need to show that the random variables
#cor, (I1V) . #cor, (I1") + #cor, (1) Z #o0k, (1)

are jointly normal in the limit. To do so, we will use Lemma 6 and show that all linear
combinations of the variables are normally distributed in the limit. This is equivalent to
showing that the random variables

#cor, (I1V) , #cor, (I17) . - ... #coE, (1)

are jointly normal in the limit. Let a4, ..., @, € R with & + -+ + &2 # 0. In [14], Gus-

tavsson showed that (6) holds for our choice of intervals IV, ..., (™ In fact, Gustavsson

showed that the variance is of magnitude logn. Therefore the result follows by Lemma 6.
To complete the proof, we will calculate the correlations between the random variables

#cor, (I1V) , #cor, (I") + #cor, (1) Z#GOE,, (1)

If j < i, we have that s; — s; ~n~” where y =1 — max;<; 6. Then Gustavsson showed
that for the GUE,

i J
V” (Z#Gm (1) = > #ou, <z,fk>>>
k=1 k=1
= Var(#GUEn ( U I(k))) logn + O(loglogn) and

k=j+1

I

1

Var (Z #GUE, (1}5’9)) = 72 logn 4+ O(loglogn)
k=1

for any 1 <[ < m. Also, by Theorem 5, we have the following relation between the GOE
and GUE

Var (#og, (I¥')) = 2Var (#gug, (1)) + o(logn) (8)

for any 1 <k < m. Thus we have that the correlation p is given by

%(Var(sn,i) + Var(Sn,j) - Var(Sn,i - Sn,j))

Var(S,,;) Var(S,, ;)

Proof of Theorem 3 for the GOE This proof is very similar to the proof of the GOE case of
Theorem 2. In this case, the intervals are given by

p(Sn,h Sn,j) =

=y +o(). .

@ Springer
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k\>? 2logk; \/*
M _ N rogk
w=(va(i-a(G) ) +ae(Tm) )
: ki \*? 2logk; \'?
(i) _ _ il . Zet
w=(va(i-a(G) ) vee(F)

ki—l 3 210gkl’_1 12
(e )ree(GEE)

where C;, C, are known constants and 2 < i < m. For sufficiently large n, the sets
IW ... 1™ are intervals. We will now prove that

#cor, (I1V) . #cor, (I1?) . - ... #oor, (1)

are jointly normally distributed in the limit as n — oo.

In [14], Gustavsson showed that (6) holds for our choice of intervals IV, ..., 1! In
fact, Gustavsson showed that the variance is again of magnitude logn for any a? + - -- +
a2 # 0. Therefore the limiting distribution is normal by Lemma 6.

The calculations of the correlations is similar to the calculations in the GOE case of
Theorem 2 and follow from Gustavsson’s calculations for the GUE and (8). O

Proof of Theorems 2 and 3 for the GSE Let x| < x; < --- < x, denote the ordered eigen-
values of an n x n matrix from the GSE and let y; < y, < --- < y;,41 denote the ordered
eigenvalues of an (2n + 1) x (2n 4+ 1) matrix from the GOE. By Theorem 5 it follows that the
joint distribution of xy,, ..., xy,, is equal to the joint distribution of 24 L Therefore

TR
the result follows by the GOE case of Theorems 2 and 3. a
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Appendix A: Interlacing Theorem

The interlacing theorem we require is known as Cauchy’s interlacing theorem for eigenval-
ues of Hermitian matrices (see [11]). Recall that if two polynomials f(x) and g(x) have real
roots r; <r, <---<ry,and s <sp <--- <s,_1, then we say that f and g interlace if

Lemma 7 (Cauchy’s Interlacing Theorem) If A is a Hermitian matrix and B is a principle
submatrix of A, then the eigenvalues of B interlace with the eigenvalues of A.

@ Springer
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Appendix B: Central Limit Theorems

In this section, we will state and prove two central limit theorems for determinantal random
point fields. Let {P,};=0 be a family of random point fields on R? such that their correlation
functions p, ; have the determinantal form

pt,k(xls (R xk) = det (Kt(-xia i-i))lfi,jfk

where K, (x, y) is a Hermitian kernel. Let {/;},>0 be a collection of Borel subsets in R4 and
let A, : L>(I,) — L*(I,) denote an integral operator on I, with kernel K,. Define v, to be
the number of particles in [, i.e. v, = #(1;). Let E; and Var, be the expectation and variance
with respect to the probability distribution of the random point field P;.

Theorem 7 (Costin-Lebowitz, Soshnikov) Let A, = K, - x;, be a family of trace class
Hermitian operators associated with determinantal random point fields {P,} such that
Var, (v;) =Tr(A, — Atz) goes to infinity as t — 00. Then

v Bl voon ©9)
~/ Var, (v;) '

in distribution as t — o0.

Remark 18 The result was proven by Costin and Lebowitz in [2] for the case when d =1
and
sin(x —y)
Ki(x,y)=——
T(x —y)

with |I;| — oo. The original paper contains a comment, due to Widom, that the result holds
for more general kernels.

for all ¢

Remark 19 We will use the result that a locally trace class Hermitian operator K defines a
determinantal random point field if and only if 0 < K <1 (see [16] or [20]).

Proof of Theorem 7 We first start by introducing some notation. For a random variable X,
let C;(X) denote the /th cumulant of X and F;(X) denote the /th factorial moment of X. By
definition,

00 i Nk
Z (iz) Co(X) = IOgE[CiZX] ,

!
P k!

FX)=E[X(X-1---(X—=-1l+1)].

By writing the characteristic function of X in power series form and expressing moments in
terms of factorial moments, we obtain the following relation

oo

o iz _ 1 k s \k
Z%kaﬂxp (; %ckoo). (10)
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In order to prove the theorem and show convergence in distribution, we will show that
the cumulants of

v, — E[v]
+/ Var, (v,)

converge to the cumulants of the standard normal. Since the first and second cumulants of
& are 0 and 1, respectively, it is enough to show that the remaining cumulants vanish in
the limit as # — oo. In particular, we will show that C;(v,) = O(C»(v,)) for [ > 2. Since
Cr(vy) =Tr(A; — Atz) — 00 as t — 0o by assumption, we would then have that

§t=

Ci(v)

W—)O forl > 2

Cl(ft) =

ast — o0.
Thus, we have only to show that C;(v;) = O(C,(v;)) for [ > 2. In order to do so, we
introduce the cluster functions 7, x, which are given by

k m
roCen o x) =y (=" m =D [ orjs, (6))
m=1 G j=1

where G is a partition of {1, 2, ..., k} into m parts Gy, ..., G, and xG; denotes the collec-
tion of x; with indices in G;. Let

Tk(Vt):/ / re(xy, .o, xp)dxy - - - dxg.
I I
For a determinantal random point process, we can write,
Fk(Vt):/ / ek (X1, ooy x)dxy - - - doxg
I I

:/ / det(K,(x,»,x_,»))lq.jqul---dxk
Iy Iy -

:ZH(_l)‘Gi‘f "'/F\G,w(xa[)dxci
I I

G i=1

= ZHT'GH(V’)

G i=l

k! 1
= Y T T, )
n:

kil k!
Ky otk =k L m

where G is a partition of {1, 2, ..., k} into m parts Gy, ..., G, and k; > 1 foreach 1 <i <
m. Thus, we can write the generating function relation

>,z >,z
kz; o Fev) =exp (; ETk(v,)) .
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Using the relation between cumulants and factorial moments (10), we obtain

X e Nk s iz _ 1)k
; (’,f!) ck(vf>=;%mv,). (11)

Finally, for determinantal random point fields
Ti(v) = (=)' = D!Tr(A)

and hence by equating coefficients in (11) we have that

-1

Civ) = (=)' = DITr(A, — AD + " a1 Co(vy) (12)

s=2

where o, 2 < s <[ — 1 are some combinatorial coefficients (irrelevant for our purposes).
We follow Soshnikov’s example from [21] and bound the trace term

-1
0<Tr(A, — A=) Tr(A] — A/™)

j=1
-1 )

<317 TrA - AD) < (- DGy,
j=1

Therefore, by an induction argument and (12), we conclude that C;(v;) = O(C,(v,)) for
[ > 2 and hence the result follows. O

Remark 20 The proof contained in [16] gives a much better probabilistic explanation of the
result than the proof presented here. In short, it states that v, has the same distribution as
the sum of independent Bernoulli random variables. Thus, (9) follows immediately from the
Lindeberg-Feller Central Limit Theorem for triangular arrays (see [15]).

We now prove a multidimensional version of Theorem 7.
Theorem 8 (Soshnikov) Let K; be a family of locally trace class Hermitian operators asso-
ciated with determinantal random point fields {P,},>o and let {I,(l), e, I,(“)},Zo be a family
of Borel subsets of R?, disjoint for any fixed t, with compact closure. Suppose
Var (# (I,(j))) = ojza,(l +o0(l) 1<j<s,
Cov (# (1}”) # (1}”)) =yija(l+o(l) i#j

Jfor some positive sequence of real numbers {a,},;>o such that a, — oo as t — oo. Then the
random vector

Ja s Ja

converges in distribution to the s-dimensional normal distribution N (0, A) where A; ; =
vijfori# jand A;; =0of for1 <i <s.

(#(15”) —E#M #U1) - E[#uf”)])
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Remark 21 The multidimensional case was proven by Soshnikov in [21] in the context of
the Airy, Bessel, and sine kernels. However, the proof given by Soshnikov is more general
and applies to general determinantal random point fields.

In order to prove this result, we will need the following lemma, [19].

Lemma 8 If A and B are bounded operators on a separable Hilbert space H and B > 0 is
trace class, then

ITr(AB)| < [|A [ Tr(B).
Also, we will need that in the space of Hilbert-Schmidt operators on a separable Hilbert

space ‘H, (A, B) = Tr(A*B) defines an inner product, [19]. Thus, by the Cauchy-Schwarz
inequality we have that

ITr (AB)| < /Tr (A*A )\/Tr (B*B). (13)

Proof of Theorem 8 We begin by introducing some notation. Let k = (ky, . .., k;) be a multi-
index. We define |k| =k; 4+ ---+ k; and k! =ky!-- - ky!. Let z=(z1, ..., z;) be an s-vector.
We will use the following notation

K=z,
(eiz _ l)k _ (eill _ 1)k1 m(em _ 1)"s )
For a multi-index [/ = (/y, ..., ;) let C; denote the /th joint cumulant and F; denote the /th

joint factorial moment of the random variables

# (1,“)) L (1}”) .

That is,

- Nk
Z () Cy zlogE[eiz'X’],

F :E[}j#(l}”) (# (1,”)) - 1) . (# (1,(”) —l+ 1)}

where X, is the s-dimensional random vector whose jth component is given by #(I,(j ). Just
as in the one-dimensional case, we have a relation between the joint factorial moments and
the joint cumulants,

iz_l k : N\ k
Z%sze@ <Z (l]fg) Ck>. (14)

k>0 k>0

The idea of the proof is to show that the joint cumulants C; vanish in the limit when
t — oo for |/| > 2. In particular, we will show that C; = O(q,) for all |/| > 2.
We use the cluster functions 7, ,, which are given by

Fon (et x) = 3= m = D! [ o6, (x6))
j=1

m=1 G
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where G is a partition of {1, 2, ..., n} into m parts Gy, ..., G, and XG; denotes the collec-
tion of x; with indices in G ;. Let Ty to be the integral of r; | over the region

mki

k,
IV o 197

Following a similar argument as in the proof of Theorem 7, we obtain a multi-dimensional
analogue of equation (11),

Z* Z*
Z HFk = exp Z HTk

k=0 k>0

and hence by (14), we can write

N iz _ 1\k
Z(ZZ) Ck:Z(e 1) T.. (15)

|
k>0 ' k>0 k!

We can now obtain a recursive relation for C; in terms of 7; as we did in the one-dimensional
case. If only one index of / is non-zero, we are in the one-dimensional case and obtain (12).
Since we dealt with this case in Theorem 7, we will assume that / contains at least two
non-zero indices. In this case, we equate coefficients from equation (15) and obtain

C=T+ Z a1 Cr (16)

2=k <]

where o ;, 2 < |k| < |I| are some combinatorial coefficients (irrelevant for our purposes).
For a determinantal random point field, 7 can be expressed as a linear combination of traces
of the form

Tr(Xlr(jl) - K, Xy K, Xy Ko m - Ko -)(,t(m) (17)

such that if k; is nonzero then at least one of the indicators in each term in the linear com-
bination is the indicator of I,(l). Therefore, using the bounds in Lemma 8 and (13), we can
bound the trace in (17) by terms of the form

Tr(x,0 - Ko xy0 - Ki- x,0) = Oar)

where i # j or terms of the form

\/TT(X,I(.H Ko xo - Ko X,I<j>)\/Tr(XII<a) Ki-xyo - Koo xy@) = 0(ar)

where i # j and o # . Hence the result follows by an induction argument on (16). ]
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