24 research outputs found

    Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    Get PDF
    BACKGROUND: Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. METHODS: The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. RESULTS: Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. CONCLUSION: The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System

    Numerical simulation of the stress and strain in the forceps for medical use

    No full text
    Proces projektowania pincety wymaga optymalizacji wielu parametrów, należy rozważyć wiele funkcji, jakie powinna spełniać, a także uwzględnić ograniczenia projektowe. Należy również uwzględnić hierarchię ich ważności. W niniejszej pracy zaprezentowano część metodyki rozwiązania tego typu problemów. Zaprezentowane w pracy procedury analizy pincet pozwalają na dokładne określenie wymiarów geometrycznych zgodnie z wymaganiami funkcjonalnymi, jakie musi spełnić pinceta. Prezentowana analiza numeryczna opisuje nieznaczny obszar zastosowań pincet, jednak zastosowany algorytm postępowania można dostosować do każdego typu pincet. Przeprowadzone obliczenia pozwalają na określenie parametrów geometrycznych w stosunku do oczekiwanej sztywności sprężyny. Wykresy opracowane na podstawie obliczeń są pomocne na etapie projektowania pincety. Obliczenia numeryczne zwróciły uwagę na istotny problem zmiany powierzchni kontaktu w funkcji obciążenia. Zaobserwowane zjawisko może źle wpływać na funkcjonowanie pincety w przypadku braku uwzględnienia go na etapie projektowania narzędzia.In order to design forceps properly it is necessary to optimise many parameters and consider the functions which it should fulfil. Of course, some simplifications are necessary respecting calculation methodology. In the paper, the solution procedure of such a problem has been presented. The presented solution allows for the precise determination of the geometrical dimensions according to the functional requirements that forceps should fulfil. The presented numerical analysis describes the small range of forceps application but the algorithm used can be applied in any other type of forceps. The carried out calculations allow for determination of the geometrical parameters with reference to the expected spring rate. The charts elaborated on the basis of the calculations are very useful during the stage of forceps design. The numerical calculations show, the essential problem, namely, the change in contact surface as a function of load. The observed phenomenon can badly affect the forceps functioning

    Rocket exhaust plume dimensions

    No full text

    Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis

    Get PDF
    The California Encephalitis Project (CEP), established in 1998 to explore encephalitic etiologies, has identified patients with N-methyl-D-aspartate receptor (NMDAR) antibodies, the likely etiology of their encephalitis. This study compares the presentation of such patients to those with viral encephalitis, so that infectious disease clinicians may identify individuals with this treatable disorder. Patients were physician-referred, and standardized forms were used to gather demographic, clinical, and laboratory data. Features of anti-NMDAR+ patients were compared with the viral encephalitides of enteroviral (EV), rabies, and herpes simplex-1 (HSV-1) origins. Sixteen cases with confirmed viral etiologies were all negative on NMDAR antibody testing. Ten anti-NMDAR+ patients were profiled with a median age of 18.5 years (range 11–31 years). None were Caucasian. They had a characteristic progression with prominent psychiatric symptoms, autonomic instability, significant neurologic abnormalities, and seizures. Two had a teratoma, and, of the remaining eight, four had serologic evidence of acute Mycoplasma infection. The clinical and imaging features of anti-NMDAR+ patients served to differentiate this autoimmune disorder from HSV-1, EV, and rabies. Unlike classic paraneoplastic encephalitis, anti-NMDAR encephalitis affects younger patients and is often treatable. The association of NMDAR antibodies in patients with possible Mycoplasma pneumoniae infection warrants further study
    corecore