610 research outputs found

    Symmetry-induced interference effects in metalloporphyrin wires

    Full text link
    Organo-metallic molecular structures where a single metallic atom is embedded in the organic backbone are ideal systems to study the effect of strong correlations on their electronic structure. In this work we calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched by gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT+U approaches. The zero bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes qualitatively the conductance and spin-filtering behavior in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets

    The BioGRID Interaction Database: 2011 update

    Get PDF
    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    10 Figures. The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ‘‘advertisement’’ in accordance with 18 U.S.C. section 1734.The CD11a/CD18 (leukocyte function-associated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBP-binding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AML factors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia.From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Clínica Universitaria, Universidad de Navarra, Spain; Institute of Human Genetics, Aarhus, Denmark; Hospital Universitario Gregorio Maranón, Madrid, Spain; University of Colorado Health Sciences Center, Denver; and Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot Israel. Supported by grants 08.3/0026/2000.1 from Comunidad Auto®noma de Madrid, 01/0063-01 from Fondo de Investigaciones Sanitarias, and SAF2002-04615- C02-01 from Ministerio de Ciencia y Tecnología (A.L.C.). We gratefully acknowledge Drs Ana Aranda and Aurora Sánchez-Pacheco for their very generous help with ChIP assays.Peer reviewe

    Translation initiation from the ribosomal A site or the P site, dependent on the conformation of RNA pseudoknot I in dicistrovirus RNAs

    Get PDF
    available in PMC 2010 July 31.Translation initiation of the second ORF of insect dicistrovirus RNA depends on an internal ribosomal entry site (IRES) in its intergenic region (IGR) and is exceptional in using a codon other than AUG and in not using the canonical initiator methionine tRNA. Studies in vitro suggest that pseudoknot I (PKI) immediately preceding the initiation codon occupies the ribosomal P site and that an elongator tRNA initiates translation from the ribosomal A site. Using dicistronic reporters carrying mutations in the initiation codon of the second ORF and mutant elongator or initiator tRNAs capable of reading these codons, we provide direct evidence for initiation from the A site in mammalian cells and, under certain conditions, also from the P site. Initiation from the A but not the P site requires PKI. Thus, PKI structure may be dynamic, and optimal IGR IRES-mediated translation of dicistroviral RNAs may require trans-acting factors to stabilize PKI.National Institutes of Health (U.S.) (grant GM17151)Japan. Ministry of Education, Culture, Sports, Science and Technology (Grants-In-Aid for Scientific Research on Priority Areas

    Lattice Dynamics and Specific Heat of α\alpha - GeTe: a theoretical and experimental study

    Full text link
    We extend recent \textit{ab initio} calculations of the electronic band structure and the phonon dispersion relations of rhombohedral GeTe to calculations of the density of phonon states and the temperature dependent specific heat. The results are compared with measurements of the specific heat. It is discovered that the specific heat depends on hole concentration, not only in the very low temperature region (Sommerfeld term) but also at the maximum of Cp/T3C_p/T^3 (around 16 K). To explain this phenomenon, we have performed \textit{ab initio} lattice dynamical calculations for GeTe rendered metallic through the presence of a heavy hole concentration (pp ∌\sim 2×\times 1021^{21} cm−3^{-3}). They account for the increase observed in the maximum of Cp/T3C_p/T^3.Comment: 8 pages, 7 figures, ref. 19 correcte

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    The CD11a/CD18 (leukocyte functionassociated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBPbinding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/ AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AMLfactors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia

    Enhanced superconducting pairing interaction in indium-doped tin telluride

    Full text link
    The ferroelectric degenerate semiconductor Sn1−ή_{1-\delta}Te exhibits superconductivity with critical temperatures, TcT_c, of up to 0.3 K for hole densities of order 1021^{21} cm−3^{-3}. When doped on the tin site with greater than xcx_c =1.7(3)= 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x>xcx > x_c than for x<xcx < x_c. By examining the effect of In dopant atoms on both TcT_c and the temperature of the ferroelectric structural phase transition, TSPTT_{SPT}, we show that phonon modes related to this transition are not responsible for this TcT_c enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.Comment: 7 page

    Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to Function in Mammalian Cells

    Get PDF
    A previously engineered Methanocaldococcus jannaschii –tyrosyl-tRNA synthetase pair orthogonal to Escherichia coli was modified to become orthogonal in mammalian cells. The resulting -tyrosyl-tRNA synthetase pair was able to suppress an amber codon in the green fluorescent protein, GFP, and in a foldon protein in mammalian cells. The methodology reported here will allow rapid transformation of the much larger collection of existing tyrosyl-tRNA synthetases that were already evolved for the incorporation of an array of over 50 unnatural amino acids into proteins in Escherichia coli into proteins in mammalian cells. Thus we will be able to introduce a large array of possibilities for protein modifications in mammalian cells
    • 

    corecore