432 research outputs found

    Effect of CH4_{4} addition on excess electron mobility in liquid Kr

    Full text link
    The excess electrons mobility μ\mu has been measured recently in liquid mixtures of Kr and CH4_{4} as a function of the electric field up to E≈104V/cmE\approx 10^{4} V/cm and of the CH4_{4} concentration xx up to x≈10x \approx 10 % , at temperatures T≈130K,T\approx 130 K, fairly close to the normal boiling point of Kr (Tb≈120K)(T_{b}\approx 120 K)(folegani). We present here new data which extend the previous set in the region of low electric field. The experimental results are interpreted in terms of a kinetic model previously proposed to explain the concentration dependent behavior of μ\mu in liquid Ar--Kr and Ar--Xe mixtures. The main result is that CH4_{4} is more effective in enhancing energy--transfer rather than momentum--transfer in comparison with mixtures of liquified noble gases. The field dependence of μ\mu is quite complicate. In particular, at intermediate values of the field, there appears to be a crossover between two different electric--field dependent behaviors of μ.\mu. The electric field strength at crossover is well correlated with the concentration of CH4._{4}. This fact suggests that different excitations of the molecular solute might be involved in the momentum-- and energy--transfer processes for different values of the mean electron energy.Comment: 17, pages,7 figures, RevTeX4, submitted to J.Chem.Phy

    Performance evaluation of novel square-bordered position-sensitive silicon detectors with four-corner readout

    Full text link
    We report on a recently developed novel type of large area (62 mm x 62 mm) position sensitive silicon detector with four-corner readout. It consists of a square-shaped ion-implanted resistive anode framed by additional low-resistivity strips with resistances smaller than the anode surface resistance by a factor of 2. The detector position linearity, position resolution, and energy resolution were measured with alpha-particles and heavy ions. In-beam experimental results reveal a position resolution below 1 mm (FWHM) and a very good non-linearity of less than 1% (rms). The energy resolution determined from 228Th alpha source measurements is around 2% (FWHM).Comment: 13 pages, 10 figures, submitted to Nucl. Instr. and Meth.

    Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration

    Full text link
    We report the preparation of neutron-activated xenon for the calibration of liquid xenon (LXe) detectors. Gamma rays from the decay of xenon metastable states, produced by fast neutron activation, were detected and their activities measured in a LXe scintillation detector. Following a five-day activation of natural xenon gas with a Cf-252 (4 x 10^5 n/s) source, the activities of two gamma ray lines at 164 keV and 236 keV, from Xe-131m and Xe-129m metastable states, were measured at about 95 and 130 Bq/kg, respectively. We also observed three additional lines at 35 keV, 100 keV and 275 keV, which decay away within a few days. No long-lifetime activity was observed after the neutron activation.Comment: to be published in NIM A, corrected typos in Table 1 and Fig.6 of the previous versio

    Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)

    Get PDF
    LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of 0.2-20 MeV. The detector, with 400 cm2^2 area and 7 cm drift gap, is filled with high purity LXe. Both ionization and scintillation light signals are detected to measure the energy deposits and the three spatial coordinates of individual \g -ray interactions within the sensitive volume. The TPC has been characterized with repeated measurements of its spectral and Compton imaging response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be. The detector shows a linear response to \g -rays in the energy range 511 keV -4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV /E}. Compton imaging of \yt \g -ray events with two detected interactions is consistent with an angular resolution of ∼\sim 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI, 2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed

    High-Temperature Superconducting Level Meter for Liquid Argon Detectors

    Get PDF
    Capacitive devices are customarily used as probes to measure the level of noble liquids in detectors operated for neutrino studies and dark matter searches. In this work we describe the use of a high-temperature superconducting material as an alternative to control the level of a cryogenic noble liquid. Lab measurements indicate that the superconductor shows a linear behaviour, a high degree of stability and offers a very accurate determination of the liquid volume. This device is therefore a competitive instrument and shows several advantages over conventional level meters.Comment: 13 pages, 11 figures. Accepted for publication in JINS

    A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell

    Full text link
    A detector using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Its specific design aims at taking full advantage of the Liquid Xenon scintillation properties. This paper reports on energy, time and spatial resolution capabilities of the first LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube (PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental results show that such a LXe PET configuration might be a promising solution insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM

    Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon

    Get PDF
    Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV

    Demonstration of a Lightguide Detector for Liquid Argon TPCs

    Get PDF
    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector
    • …
    corecore