630 research outputs found

    The Role of Dysregulated Glucose Metabolism in Epithelial Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer and also one of the most poorly understood. Other health issues that are affecting women with increasing frequency are obesity and diabetes, which are associated with dysglycemia and increased blood glucose. The Warburg Effect describes the ability of fast-growing cancer cells to preferentially metabolize glucose via anaerobic glycolysis rather than oxidative phosphorylation. Recent epidemiological studies have suggested a role for hyperglycemia in the pathogenesis of a number of cancers. If hyperglycemia contributes to tumour growth and progression, then it is intuitive that antihyperglycemic drugs may also have an important antitumour role. Preliminary reports suggest that these drugs not only reduce available plasma glucose, but also have direct effects on cancer cell viability through modification of molecular energy-sensing pathways. This review investigates the effect that hyperglycemia may have on EOC and the potential of antihyperglycemic drugs as therapeutic adjuncts

    SOFIAS – Herramienta para el análisis de ciclo de vida y la calificación ambiental de edificios

    Get PDF
    This paper describes the development process of a new software tool, called SOFIAS (Software for a Sustainable Architecture), funded by the Spanish Ministry of Economy and Competitivenes. Following CEN/TC 350 standard on environmental assessment of buildings, the tool aims at assisting building professionals on reducing the life-cycle environmental impact through the design of new buildings and the refurbishment of existing ones. In addition, SOFIAS provides a rating system based on the Life Cycle Assessment (LCA) methodology. This paper explains the innovative aspects of this software, the working methodology and the different type of results that can be obtained using SOFIAS.SOFIAS (Ref. number IPT-2011-0948-380000) project co financed by the Spanish Ministry of Economy and Competitiveness

    Binding MOAD, a high-quality protein–ligand database

    Get PDF
    Binding MOAD (Mother of All Databases) is a database of 9836 protein–ligand crystal structures. All biologically relevant ligands are annotated, and experimental binding-affinity data is reported when available. Binding MOAD has almost doubled in size since it was originally introduced in 2004, demonstrating steady growth with each annual update. Several technologies, such as natural language processing, help drive this constant expansion. Along with increasing data, Binding MOAD has improved usability. The website now showcases a faster, more featured viewer to examine the protein–ligand structures. Ligands have additional chemical data, allowing for cheminformatics mining. Lastly, logins are no longer necessary, and Binding MOAD is freely available to all at http://www.BindingMOAD.org

    Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding

    Get PDF
    The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for inhibiting two proteins in a single pathway

    Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle.

    Get PDF
    The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium

    Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites

    Get PDF
    A new binding site comparison algorithm using optimal superposition of the continuous pharmacophoric property distributions is reported. The method demonstrates high sensitivity in discovering both, distantly homologous and convergent binding sites. Good quality of superposition is also observed on multiple examples. Using the new approach, a measure of site similarity is derived and applied to clustering of ligand binding pockets in PDB

    Automated Docking Screens: A Feasibility Study

    Get PDF
    Molecular docking is themost practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCKBlaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCKBlaster recapitulates the crystal ligand pose within 2 A ̊ rmsd 50-60 % of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5 % of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5 % of 100 property-matched decoys while also posing within 2 A ̊ rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available a

    Chemical Approaches To Perturb, Profile, and Perceive Glycans

    Get PDF
    Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice
    corecore