818 research outputs found

    Viscosity critical behaviour at the gel point in a 3d lattice model

    Full text link
    Within a recently introduced model based on the bond-fluctuation dynamics we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors and are in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long time tail which is well fitted by a stretched exponential decay.Comment: 14 pag., RevTex, 9 figure

    Static and dynamic heterogeneities in irreversible gels and colloidal gelation

    Full text link
    We compare the slow dynamics of irreversible gels, colloidal gels, glasses and spin glasses by analyzing the behavior of the so called non-linear dynamical susceptibility, a quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In glasses this quantity typically grows with the time, reaches a maximum and then decreases at large time, due to the transient nature of dynamical heterogeneities and to the absence of a diverging static correlation length. We have recently shown that in irreversible gels the dynamical susceptibility is instead an increasing function of the time, as in the case of spin glasses, and tends asymptotically to the mean cluster size. On the basis of molecular dynamics simulations, we here show that in colloidal gelation where clusters are not permanent, at very low temperature and volume fractions, i.e. when the lifetime of the bonds is much larger than the structural relaxation time, the non-linear susceptibility has a behavior similar to the one of the irreversible gel, followed, at higher volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure

    Dynamical Correlation Length and Relaxation Processes in a Glass Former

    Full text link
    We investigate the relaxation process and the dynamical heterogeneities of the kinetically constrained Kob--Anderson lattice glass model, and show that these are characterized by different timescales. The dynamics is well described within the diffusing defect paradigm, which suggest to relate the relaxation process to a reverse--percolation transition. This allows for a geometrical interpretation of the relaxation process, and of the different timescales

    Number of spanning clusters at the high-dimensional percolation thresholds

    Full text link
    A scaling theory is used to derive the dependence of the average number of spanning clusters at threshold on the lattice size L. This number should become independent of L for dimensions d<6, and vary as log L at d=6. The predictions for d>6 depend on the boundary conditions, and the results there may vary between L^{d-6} and L^0. While simulations in six dimensions are consistent with this prediction (after including corrections of order loglog L), in five dimensions the average number of spanning clusters still increases as log L even up to L = 201. However, the histogram P(k) of the spanning cluster multiplicity does scale as a function of kX(L), with X(L)=1+const/L, indicating that for sufficiently large L the average will approach a finite value: a fit of the 5D multiplicity data with a constant plus a simple linear correction to scaling reproduces the data very well. Numerical simulations for d>6 and for d=4 are also presented.Comment: 8 pages, 11 figures. Final version to appear on Physical Review

    Complex viscosity behavior and cluster formation in attractive colloidal systems

    Full text link
    The increase of the viscosity, which is observed in attractive colloidal systems by varying the temperature or the volume fraction, can be related to the formation of structures due to particle aggregation. In particular we have studied the non trivial dependence of the viscosity from the temperature and the volume fraction in the copolymer-micellar system L64. The comparison of the experimental data with the results of numerical simulations in a simple model for gelation phenomena suggests that this intriguing behavior can be explained in terms of cluster formation and that this picture can be quite generally extended to other attractive colloidal systems.Comment: 5 pages, 4 figure

    Granular dynamics in compaction and stress relaxation

    Full text link
    Elastic and dissipative properties of granular assemblies under uniaxial compression are studied both experimentally and by numerical simulations. Following a novel compaction procedure at varying oscillatory pressures, the stress response to a step-strain reveals an exponential relaxation followed by a slow logarithmic decay. Simulations indicate that the latter arises from the coupling between damping and collective grain motion predominantly through sliding. We characterize an analogous "glass transition" for packed grains, below which the system shows aging in time-dependent sliding correlation functions.Comment: 5 pages, 5 figure

    Percolation and cluster Monte Carlo dynamics for spin models

    Get PDF
    A general scheme for devising efficient cluster dynamics proposed in a previous letter [Phys.Rev.Lett. 72, 1541 (1994)] is extensively discussed. In particular the strong connection among equilibrium properties of clusters and dynamic properties as the correlation time for magnetization is emphasized. The general scheme is applied to a number of frustrated spin model and the results discussed.Comment: 17 pages LaTeX + 16 figures; will appear in Phys. Rev.

    Heterogeneous slow dynamics in a two dimensional doped classical antiferromagnet

    Full text link
    We introduce a lattice model for a classical doped two dimensional antiferromagnet which has no quenched disorder, yet displays slow dynamics similar to those observed in supercooled liquids. We calculate two-time spatial and spin correlations via Monte Carlo simulations and find that for sufficiently low temperatures, there is anomalous diffusion and stretched-exponential relaxation of spin correlations. The relaxation times associated with spin correlations and diffusion both diverge at low temperatures in a sub-Arrhenius fashion if the fit is done over a large temperature-window or an Arrhenius fashion if only low temperatures are considered. We find evidence of spatially heterogeneous dynamics, in which vacancies created by changes in occupation facilitate spin flips on neighbouring sites. We find violations of the Stokes-Einstein relation and Debye-Stokes-Einstein relation and show that the probability distributions of local spatial correlations indicate fast and slow populations of sites, and local spin correlations indicate a wide distribution of relaxation times, similar to observ ations in other glassy systems with and without quenched disorder.Comment: 12 pages, 17 figures, corrected erroneous figure, and improved quality of manuscript, updated reference
    • …
    corecore