108 research outputs found

    TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma

    Get PDF
    Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics

    The Reinforcing Therapist Performance (RTP) experiment: Study protocol for a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rewarding provider performance has been recommended by the Institute of Medicine as an approach to improve the quality of treatment, yet little empirical research currently exists that has examined the effectiveness and cost-effectiveness of such approaches. The aim of this study is to test the effectiveness and cost-effectiveness of providing monetary incentives directly to therapists as a method to improve substance abuse treatment service delivery and subsequent client treatment outcomes.</p> <p>Design</p> <p>Using a cluster randomized design, substance abuse treatment therapists from across 29 sites were assigned by site to either an implementation as usual (IAU) or pay-for-performance (P4P) condition.</p> <p>Participants</p> <p>Substance abuse treatment therapists participating in a large dissemination and implementation initiative funded by the Center for Substance Abuse Treatment.</p> <p>Intervention</p> <p>Therapists in both conditions received comprehensive training and ongoing monitoring, coaching, and feedback. However, those in the P4P condition also were given the opportunity to earn monetary incentives for achieving two sets of measurable behaviors related to quality implementation of the treatment.</p> <p>Outcomes</p> <p>Effectiveness outcomes will focus on the impact of the monetary incentives to increase the proportion of adolescents who receive a targeted threshold level of treatment, months that therapists demonstrate monthly competency, and adolescents who are in recovery following treatment. Similarly, cost-effectiveness outcomes will focus on cost per adolescent receiving targeted threshold level of treatment, cost per month of demonstrated competence, and cost per adolescent in recovery.</p> <p>Trial Registration</p> <p>Trial Registration Number: NCT01016704</p

    Development and characterization of phytosterol-enriched oil microcapsules for foodstuff application

    Get PDF
    Phytosterols are lipophilic compounds contained in plants and have several biological activities. The use of phytosterols in food fortification is hampered due to their high melting temperature, chalky taste, and low solubility in an aqueous system. Also, phytosterols are easily oxidized and are poorly absorbed by the human body. Formulation engineering coupled with microencapsulation could be used to overcome these problems. The aim of this study was to investigate the feasibility of encapsulating soybean oil enriched with phytosterols by spray-drying using ternary mixtures of health-promoting ingredients, whey protein isolate (WPI), inulin, and chitosan as carrier agents. The effect of different formulations and spray-drying conditions on the microencapsules properties, encapsulation efficiency, surface oil content, and oxidation stability were studied. It was found that spherical WPI-inulin-chitosan phytosterol-enriched soybean oil microcapsules with an average size below 50 μm could be produced with good encapsulation efficiency (85%), acceptable level of surface oil (11%), and water activity (0.2–0.4) that meet industrial requirements. However, the microcapsules showed very low oxidation stability with peroxide values reaching 101.7 meq O2/kg of oil just after production, and further investigations and optimization are required before any industrial application of this encapsulated system

    Circulating tumor cells: Utopia or reality?

    No full text
    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia, but its actual utility remains among the fastest growing research fields in oncology. Š 2013 Future Medicine Ltd

    Endoplasmic reticulum stress and unfolded protein response in breast cancer: The balance between apoptosis and autophagy and its role in drug resistance

    No full text
    The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstreamUPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanismof tumor progression. In this review,we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aimto disclose novel therapeutic scenarios. The hypothesis that autophagy and UPRmay provide novelmolecular targets in humanmalignancies is discussed

    TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells

    No full text
    Adaptation to endoplasmic reticulum (ER) stress through the upregulation of the ER chaperone BiP/Grp78 favors resistance of cancer cells to anthracyclins. We recently demonstrated that the mitochondrial HSP90 chaperone TNF receptor-associated protein 1 (TRAP1) is also localized in the ER, where it is responsible for protection from ER stress and quality control on specific mitochondrial proteins contributing to its anti-apoptotic function and the regulation of the mitochondrial apoptotic pathway. Based on the evidence that Bip/Grp78 and TRAP1 are co-upregulated in about 50% of human breast carcinomas (BCs), and considering that the expression of TRAP1 is critical in favoring resistant phenotypes to different antitumor agents, we hypothesized that ER-associated TRAP1 is also favoring resistance to anthracyclins. Indeed, anthracyclins induce ER stress in BC cells and cross-resistance between ER stress agents and anthracyclins was observed in bortezomib- and anthracyclin-resistant cells. Several lines of evidence suggest a mechanistic link between the ER-stress protecting function of TRAP1 and resistance to anthracyclins: i) ER stress- and anthracyclin-resistant cell lines are characterized by the upregulation of TRAP1; ii) TRAP1 silencing in both drug-resistant cell models restored the sensitivity to bortezomib and anthracyclins; iii) the transfection of a TRAP1 deletion mutant, whose localization is restricted to the ER, in TRAP1 KD cells protected from apoptosis induced by anthracyclins; iv) the disruption of the ER-associated TRAP1/TBP7 pathway by a TBP7 dominant negative deletion mutant re-established drug sensitivity in drug-resistant cells. This process is likely mediated by the ability of TRAP1 to modulate the PERK pathway as TRAP1 KD cells failed to induce the phosphorylation of PERK in response to anthracyclins. Moreover, the downregulation of TRAP1 in combination with ER stress agents produced high cytotoxic effects in BC cells. These results suggest that ER-associated TRAP1 plays a role in protecting tumor cells against DNA damaging agents by modulating the PERK pathway
    • …
    corecore