61 research outputs found

    po 040 development of a tunable form of interferon alpha for in vivo cancer gene therapy

    Get PDF
    Introduction The immune system is a double-edge sword in cancer. On the one hand, it exerts immunosurveillance to eradicate transformed cells that occasionally appear in the body; on the other hand, cancer cells can recruit immune cells endowed with pro-tumorigenic activity. Our lab previously developed a strategy for targeted gene-based delivery of interferon alpha (IFNa) to tumours by tumour infiltrating monocytes/macrophages, which induces robust anti-cancer responses in several experimental models without inducing strong IFN responses in normal tissues as compared to systemic administration of recombinant IFNa. Whereas a sustained output could ensure long-term protection from tumour recurrence, it may raise concerns for long-term side effects, especially in case of cancer eradication.To overcome this issue, we are developing inducible strategies to control the amount of IFNa secreted in the tumour microenvironment. Material and methods By fusing a destabilising domain (DD) to a protein of interest (POI) the former can confer its instability to the latter. This destabilisation can be rescued in a reversible and dose dependent manner with the addition of a small molecule specifically binding to the DD. To apply this technology to our strategy we have designed and in vitro tested different fusion proteins of IFNa (DD-IFNa). We also developed improved DD-IFNa with the addition of flexible and/or cleavable linkers and selected them for their capacity to be stabilised in a dose dependent manner in presence of their specific ligand in vitro . Results and discussions Through this approach, we have identified effective fusion proteins with low basal activity and high fold induction upon ligand treatment. These novel tunable forms of IFNa are functional and their specific activity are comparable to the wild type cytokine in inducing IFN responsive genes. Based on these promising in vitro results we are now translating these new platforms in vivo to test their efficacy in inducing anti-tumour responses in melanoma, colon and glioma models of cancer. Conclusion In the perspective of clinical translation our approach can be used in the future to switch on/off the levels of IFNa in a tunable and personalised fashion for cancer eradication

    Performance evaluation of a new on-demand molecular test for the rapid identification of severe acute respiratory syndrome coronavirus 2 in pediatric and adult patients

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD (TM) M10 assay performance was compared with Xpert (R) Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the "Istituto di Ricovero e Cura a Carattere Scientifico" (IRCCS) Ospedate Pediatrico Bambino Gesu, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert (R) Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert (R) Xpress SARS-CoV-2 results were considered as the reference, STANDARD (TM) M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs

    Lessons from SARS-CoV-2 Pandemics: How Restrictive Measures Impacted the Trend of Respiratory Infections in Neonates and Infants up to Three Months of Age

    Get PDF
    (1) Background: Massive social efforts to prevent the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have affected the epidemiological features of respiratory infections. (2) Methods: The study aims to describe the trend of hospitalizations for bronchiolitis among newborns and infants up to three months of life in Rome (Italy), in the pre-COVID-19 era and during the pandemic. (3) Results: We observed a marked decrease in the number of neonates and infants with bronchiolitis after national lockdowns in 2020 and the first months of 2021 and a similar trend in the number of bronchiolitis caused by respiratory syncytial virus (RSV). RSV was the leading pathogen responsible for bronchiolitis before the national lockdown in March 2020 (70.0% of cases), while Rhinovirus was the leading pathogen responsible for bronchiolitis (62.5%) during the pandemic while strict restrictions were ongoing. As Italy approached the COVID-19 vaccination target, the national government lifted some COVID-19-related restrictions. A surprising rebound of bronchiolitis (particularly cases caused by RSV) was observed in October 2021. (4) Conclusions: In this study, we describe for the first time the fluctuations over time of RSV bronchiolitis among newborns and young infants in Italy in relation to the restrictive measures containing the spread of the COVID-19 pandemic. Our results are in line with other countries' reports

    met overexpression turns human primary osteoblasts into osteosarcomas

    Get PDF
    The MET oncogene was causally involved in the pathogenesis of a rare tumor, i.e., the papillary renal cell carcinoma, in which activating mutations, either germline or somatic, were identified. MET activating mutations are rarely found in other human tumors, whereas at higher frequencies, MET is amplified and/or overexpressed in sporadic tumors of specific histotypes, including osteosarcoma. In this work, we provide experimental evidence that overexpression of the MET oncogene causes and sustains the full-blown transformation of osteoblasts. Overexpression of MET , obtained by lentiviral vector–mediated gene transfer, resulted in the conversion of primary human osteoblasts into osteosarcoma cells, displaying the transformed phenotype in vitro and the distinguishing features of human osteosarcomas in vivo . These included atypical nuclei, aberrant mitoses, production of alkaline phosphatase, secretion of osteoid extracellular matrix, and striking neovascularization. Although with a lower tumorigenicity, this phenotype was superimposable to that observed after transfer of the MET gene activated by mutation. Both transformation and tumorigenesis were fully abrogated when MET expression was quenched by short-hairpin RNA or when signaling was impaired by a dominant-negative MET receptor. These data show that MET overexpression is oncogenic and that it is essential for the maintenance of the cancer phenotype. (Cancer Res 2006; 66(9): 4750-7

    suspected transmission of tuberculosis in a maternity ward from a smear positive nurse preliminary results of clinical evaluations and testing of neonates potentially exposed rome italy 1 january to 28 july 2011

    Get PDF
    We report preventive measures adopted after tuberculosis (TB) transmission from a nurse to a newborn assessed in late July 2011. All exposed neonates born between January and July 2011 were clinically evaluated and tested by QuantiFERON TB gold in-tube; newborns testing positive were referred for prophylaxis. Of 1,340 newborns, 118 (9%) tested positive and no other active cases of TB were found. Active surveillance for TB will be continued over the next three years for all those exposed

    Highly specific memory b cells generation after the 2nd dose of bnt162b2 vaccine compensate for the decline of serum antibodies and absence of mucosal iga

    Get PDF
    Specific memory B cells and antibodies are a reliable read-out of vaccine efficacy. We analysed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase, thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that the first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies, thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterilizing immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA

    MicroRNA-34a Inhibits the Proliferation and Metastasis of Osteosarcoma Cells Both In Vitro and In Vivo

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenously expressed, small noncoding RNAs, which suppress its target mRNAs at the post-transcriptional level. Studies have demonstrated that miR-34a, which is a direct target of the p53 tumor suppressor gene, functions as a tumor suppressor and is associated with the tumor growth and metastasis of various human malignances. However, the role of miR-34a in osteosarcoma has not been totally elucidated. In the present study, the effects of miR-34a on osteosarcoma and the possible mechanism by which miR-34a affected the tumor growth and metastasis of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDING: Over-expression of miR-34a partially inhibited proliferation, migration and invasion of osteosarcoma cells in vitro, as well as the tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. c-Met is a target of miR-34a, and regulates the migration and invasion of osteosarcoma cells. Osteosarcoma cells over-expressing miR-34a exhibited a significant decrease in the expression levels of c-Met mRNA and protein simultaneously. Finally, the results from bioinformatics analysis demonstrated that there were multiple putative targets of miR-34a that may be associated with the proliferation and metastasis of osteosarcoma, including factors in Wnt and Notch signaling pathways. CONCLUSION/SIGNIFICANCE: The results presented in this study demonstrated that over-expression of miR-34a could inhibit the tumor growth and metastasis of osteosarcoma probably through down regulating c-Met. And there are other putative miR-34a target genes beside c-Met which could potentially be key players in the development of osteosarcoma. Since pulmonary metastases are responsible for mortality of patient carrying osteosarcoma, miR-34a may prove to be a promising gene therapeutic agent. It will be interesting to further investigate the mechanism by which miR-34a functions as a tumor suppressor gene in osteosarcoma
    • …
    corecore