1,184 research outputs found

    The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    Get PDF
    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program

    The monitoring task in automated checkout of space vehicles

    Get PDF
    Man-machine system - human monitoring tasks in automatic checkout of space vehicle

    Thermalization from gauge/gravity duality: Evolution of singularities in unequal time correlators

    Full text link
    We consider a gauge/gravity dual model of thermalization which consists of a collapsing thin matter shell in asymptotically Anti-de Sitter space. A central aspect of our model is to consider a shell moving at finite velocity as determined by its equation of motion, rather than a quasi-static approximation as considered previously in the literature. By applying a divergence matching method, we obtain the evolution of singularities in the retarded unequal time correlator GR(t,t)G^R(t,t'), which probes different stages of the thermalization. We find that the number of singularities decreases from a finite number to zero as the gauge theory thermalizes. This may be interpreted as a sign of decoherence. Moreover, in a second part of the paper, we show explicitly that the thermal correlator is characterized by the existence of singularities in the complex time plane. By studying a quasi-static state, we show the singularities at real times originate from contributions of normal modes. We also investigate the possibility of obtaining complex singularities from contributions of quasi-normal modes.Comment: 35 pages, 4 figure

    Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors

    Get PDF
    Myc family proteins promote cancer by inducing widespread changes in gene expression. Their rapid turn-over by the ubiquitin-proteasome pathway is regulated through phosphorylation of Myc Box I and ubiquitination by SCFFbxw7. However, N-Myc protein is stabilized in neuroblastoma by Aurora-A kinase in a manner that is sensitive to certain Aurora-A-selective inhibitors. Here we identify a direct interaction between the catalytic domain of Aurora-A and a site flanking Myc Box I that also binds SCFFbxw7. We determine the crystal structure of the complex between Aurora-A and this region of N-Myc to 1.72 Å resolution. The structure indicates that the conformation of Aurora-A induced by compounds such as alisertib and CD532 is not compatible with binding of N-Myc, explaining the activity of these compounds in neuroblastoma cells and providing a rational basis for the design of cancer therapeutics optimized for destabilization of the complex. We also propose a model for the stabilization mechanism in which binding to Aurora-A alters how N-Myc interacts with SCFFbxw7 to disfavor the generation of Lys48-linked poly-Ub chains

    Systemic oncolytic adenovirus delivered in mesenchymal carrier cells modulate tumor infiltrating immune cells and tumor microenvironment in mice with neuroblastoma.

    Get PDF
    Celyvir (autologous mesenchymal cells -MSCs- that carry an oncolytic adenovirus) is a new therapeutic strategy for metastatic tumors developed by our research group over the last decade. There are limitations for studying the immune effects of human oncolytic adenoviruses in murine models since these viruses do not replicate naturally in these animals. The use of xenografts in immunodeficient mice prevent assessing important clinical aspects of this therapy such as the antiadenoviral immune response or the possible intratumoral immune changes, both of tumor infiltrating leukocytes and of the microenvironment. In our strategy, the presence of MSCs in the medicinal product adds an extra level of complexity. We present here a murine model that overcomes many of these limitations. We found that carrier cells outcompeted intravenous administration of naked particles in delivering the oncolytic virus into the tumor masses. The protection that MSCs could provide to the oncolytic adenovirus did not preclude the development of an antiadenoviral immune response. However, the presence of circulating antiadenoviral antibodies did not prevent changes detected at the tumor masses: increased infiltration and changes in the quality of immune cells per unit of tumor volume, and a less protumoral and more inflammatory profile of the tumor microenvironment. We believe that the model described here will enable the study of crucial events related to the immune responses affecting both the medicinal product and the tumor

    Durable response to serial tyrosine kinase inhibitors (TKIs) in an adolescent with metastatic TFG-ROS1 fusion positive Inflammatory Myofibroblastic Tumor (IMT)

    Get PDF
    Here, we present the case of an adolescent with a rare metastatic Inflammatory myofibroblastic tumor (IMT) harboring a TFG-ROS1 fusion initially detected on tumor progression and retrospectively identified in the primary tumor after targeted RNA sequencing. The patient benefitted from sequential TKIs over a 5-year period with response to the third generation ALK/ROS inhibitor, lorlatinib leading to resection of the primary tumor. Detailed molecular analysis can identify targetable oncogenic kinase fusions that alters management in patients with unresectable disease and should be considered in all patients

    Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma.

    Get PDF
    The majority of high-risk neuroblastomas can be divided into three distinct molecular subgroups defined by the presence of MYCN amplification, upstream TERT rearrangements or alternative lengthening of telomeres (ALT). The common defining feature of all three subgroups is altered telomere maintenance; MYCN amplification and upstream TERT rearrangements drive high levels of telomerase expression whereas ALT is a telomerase independent telomere maintenance mechanism. As all three telomere maintenance mechanisms are independently associated with poor outcomes, the development of strategies to selectively target either telomerase expressing or ALT cells holds great promise as a therapeutic approach that is applicable to the majority of children with aggressive disease.Here we summarise the biology of telomere maintenance and the molecular drivers of aggressive neuroblastoma before describing the most promising therapeutic strategies to target both telomerase expressing and ALT cancers. For telomerase-expressing neuroblastoma the most promising targeted agent to date is 6-thio-2'-deoxyguanosine, however clinical development of this agent is required. In osteosarcoma cell lines with ALT, selective sensitivity to ATR inhibition has been reported. However, we present data showing that in fact ALT neuroblastoma cells are more resistant to the clinical ATR inhibitor AZD6738 compared to other neuroblastoma subtypes. More recently a number of additional candidate compounds have been shown to show selectivity for ALT cancers, such as Tetra-Pt (bpy), a compound targeting the telomeric G-quadruplex and pifithrin-α, a putative p53 inhibitor. Further pre-clinical evaluation of these compounds in neuroblastoma models is warranted.In summary, telomere maintenance targeting strategies offer a significant opportunity to develop effective new therapies, applicable to a large proportion of children with high-risk neuroblastoma. In parallel to clinical development, more pre-clinical research specifically for neuroblastoma is urgently needed, if we are to improve survival for this common poor outcome tumour of childhood

    ¹⁸F-meta-fluorobenzylguanidine (¹⁸F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models

    Get PDF
    argeted radiotherapy with {13}^1I-mIBG, a substrate of the human norepinephrine transporter (NET-1), shows promising responses in heavily pre-treated neuroblastoma (NB) patients. Combinatorial approaches that enhance {13}^1I-mIBG tumour uptake are of substantial clinical interest but biomarkers of response are needed. Here, we investigate the potential of {18}^F-mFBG, a positron emission tomography (PET) analogue of the {123}^I-mIBG radiotracer, to quantify NET-1 expression levels in mouse models of NB following treatment with AZD2014, a dual mTOR inhibitor. The response to AZD2014 treatment was evaluated in MYCN amplified NB cell lines (Kelly and SK-N-BE(2)C) by Western blot (WB) and immunohistochemistry. PET quantification of {18}^F-mFBG uptake post-treatment in vivo was performed, and data correlated with NET-1 protein levels measured ex vivo. Following 72 h AZD2014 treatment, in vitro WB analysis indicated decreased mTOR signalling and enhanced NET-1 expression in both cell lines, and {18}^F-mFBG revealed a concentration-dependent increase in NET-1 function. AZD2014 treatment failed however to inhibit mTOR signalling in vivo and did not significantly modulate intratumoural NET-1 activity. Image analysis of {18}^F-mFBG PET data showed correlation to tumour NET-1 protein expression, while further studies are needed to elucidate whether NET-1 upregulation induced by blocking mTOR might be a useful adjunct to {131}^I-mIBG therapy

    Degenerate Stars and Gravitational Collapse in AdS/CFT

    Get PDF
    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.Comment: 75 page

    Statistical Communication Theory

    Get PDF
    Contains reports on six research projects
    corecore