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A. SECOND-ORDER NONLINEAR FILTERS

1. White Noise Input

The problem considered in this report is that of optimizing the filter of Fig. X-1.

We are given a white Gaussian-noise input x(t) of unity power per cycle per second, and
a desired output z(t) which is some nonlinear function of the past of x(t); we must choose

the parameters of the filter of Fig. X-1 so that its output u(t) is as close as possible,
in the mean-square sense, to z(t). If E stands for expectation and Jd for the mean-

square error, then we want to minimize

S= E{[u(t) - z(t)]2 (1)

The filter of Fig. X-1 is composed of a dc voltage co, a linear filter with impulse

response L1 (t), and a set of N normalized linear filters with impulse response {hn(t)}

each of which is followed by a no-memory squaring device and a pure gain {an}. The

normalization of {hn(t)} is defined by

h(t) dt = 1 (2)

The quadratic part, y2 (t), of the filter output is a little more general than it might

CONSTANT

Fig. X-1. Second-order nonlinear filter.
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at first appear. That is, given any output y2(t) defined by

N N 0C 0c

y, (t) Z ~ b ki(- 1 ) x(t - 71) dT 1  k (T2) x(t - 72) d 2  (3)i=l j=l 1 0 0

then there exists a normalized set of N linear filters with impulse response {hn(t)} and

a set of N gains {an} with the property that

N 00

y2(t) = y 2 (t) n= anl hn(T) x(t-T) dT (4)
n=1 L T

The {h (t)} are linear combinations of {kn(t)}.

We shall now make use of Wiener's hierarchic expansion (ref. 1) to separate the

error S, defined in Eq. 1, into a sum of parts from each member of the hierarchy.

The desired output z(t) can be written as an infinite sum of members of Wiener's hier-

archy {Gn(t)}.

0o

z(t) = Z Gn(t) (5)
n=0

The filter output contains no terms higher than second order in the input. Therefore

the filter output can be written as

2
u(t) = ; Yn(t) (6)

n=0

in which the members of the set {Yn(t)} are members of Wiener's hierarchy and will be

defined explicitly later.

The members of the sets {Gn(t)} and {Yn(t)} have the following useful properties:

E{Gn(t) Gm(t)} = 0 n # m (7)

E{Yn(t) Ym(t)} = 0 n * m (8)

E{G n(t) Ym(t)} = 0 n * m (9)

Substituting Eqs. 5 and 6 in Eq. 1, we obtain

E _ G n(t ) - Ym(t) (10)
n=0 m=0 I

If we expand Eq. 10 and make use of the linear independence given in Eqs. 7, 8, and 9.

we obtain the desired separation of error.
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'= E [Go(t) - Yo(t)] 2} + E [Gl(t) - Y 1 (t)] 2 + E{ f[G2 (t) - Yt 2  + Z
n= 3

Note that only the first three terms of Eq. 11 contain the set {Yn(t)}.

We now express the first three terms of the set {Gn(t)} in terms of a set of kernels

{Kn}. We also express the set {Yn(t)} in terms of the parameters of the filter of Fig.X-1.

K l (T) x(t-T) dT

- T 1 ) x(t - T 2 ) dT 1 dT 2
0

x(T 1 ) X(T 2 ) dT 1dT 2

KZ(T, T) dT

N

Z
n=1

G2 (t) =f0 f 00 K 2 (T, T 2 ) x(t

N
Y (t) =c + a

n=1

Yl(t) f L 1 (t) x(t-T) dT

.ooo NY 2 (t) = an h (- 1 ) hn( 2)
0 n=l n n

(12)

(13)

(14)

(15)

(16)

(17)

The kernel K 2 (TI T 2) is symmetric in T 1 and T 2 .
Eq. 11 becomes

E [Go(t) - Yo(t)]2}

The first term of the error in

N
+ ann=1

=[go (18)

The error given by expression 18 can be made equal to zero by choosing

N
c = g - a

n=l
(19)

By substituting Eqs. 13 and 16 in the second term of Eq. 11, and by performing the

averaging, we obtain

E{[G (t)- Y(t)]2 - [K 1 (T) - L 1(T)] 2 dT (20)

The error given by expression 20 can be made equal to zero by choosing

L1 (T) = K 1 (rT)

(11)

Go (t) = go

G1 (t) =

- co

(21)
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Similarly, the third term of Eq. 11 becomes

E [Gz(t) - Y t)]2 = Zf K (TI' T 2 ) - an hn n ) hn(T 2 )dT dT 2  (22)

It follows directly from Hilbert-Schmidt theory (2) that the error given in expression

22 is minimized if the members of the set {an} are chosen as the N eigenvalues {n} of

largest magnitude of the symmetric kernel K(T71' T2 ) and if the members of the set {hn(t)}

are chosen as the corresponding normalized eigenfunctions {1n(t)}. That is, if

Xn n(T 2 ) = K 2 (-r T 2 ) n (T 1) dTl (23)

and if

S(T) dTr = 1 (24)

and if

Ikn > Hn+iI for all n (25)

then we should choose

a = X n = 1,...N (26)
n n

h (t) = n(t) n = 1,...N (27)

2. Non-White Noise Input

We now consider the case in which the input to the filter of Fig. X-l is Gaussian

noise x(t) that is non-white. This problem can be immediately reduced to the previous

case by passing the input noise through a whitening filter with a realizable inverse and

using the output of the whitening filter as the input to a filter of the form of Fig. X-l.

This cascade arrangement still has the form of the filter of Fig. X-l, since the whitening

filter can be incorporated into each of the linear filters of this figure. The whitening

process does not increase the minimum attainable error, since each of the linear filters

can invert the effects of the whitening filter.

D. A. Chesler
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B. CONTINUOUS FEEDBACK SYSTEMS

In a previous report (1) an algebraic representation for continuous nonlinear systems

was introduced. The present report considers the representation of nonlinear feedback

systems. In the algebra of continuous systems

(1)f(t) = ... h (t-T ... n) x(T ) ... x(n) dT 1 ... dT

is represented by

f = Hn[x]

f = H n[xn ]

where these forms are equivalent. All elements in the feedback systems considered

will be assumed to be describable in terms of this algebra.

1. Additive Feedback

The equation

f = x + H[f]

describes the feedback system of Fig. X-2. If

f= Fx]

then

F = I + H * F

where I is the identity system and * denotes the cascade operation. Equation 6 is

called a system equation, and contains F implicitly. The problem is to find an explicit

representation for F in terms of the algebraic operations and H.

A necessary first step is to investigate the uniqueness of output f. If f is not unique,
then the physical system represented by Eq. 4 will exhibit some erratic behavior. A

technique for investigating uniqueness has been developed. One result is:

"If H is a bounded system then f is

unique." A bounded system, H, is one for

which all kernels h (t. , t 2 .. . tn) are

bounded functions.

Fig. X-2. Additive feedback system. Other writers (2, 3) have obtained a
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representation for F by assuming that

F = F+ F + . . . + F + ... (7)
-1 -2 -n

and substituting in Eq. 4. Thus

F +F + .. + ( 1 H2 ... ) (F 1  2 + ... ) (8)

Equating equal orders across the equality sign gives

F =I+H -F (9)
-1 1 1

F2 =H o((F F ) + H OF 2  (10)
2 2 1 -1 1 2

and so on. The meaning of the operation '1 o"1 can be obtained from the following example.

{H3(A 1  A . A5 )}[x8 ]= H 3 [A[X] A 2 [x 2 ] . A5[x] (11)

in the notation of the previous report (1). After rearrangement we have

1 (I- H )-1 (12)

-1 -1
F = (I - H )-1 H (I-H) (13)

and so on. Thus, an infinite series representation for F has been developed. However,

the reliable use of any series depends upon its convergence.

Brilliant (2) developed a method for testing convergence, but this method is conserv-

ative and tends to show only analyticity, that is, convergence for sufficiently small inputs.

Furthermore, the series (Eq. 7) developed above can be shown to diverge in cases in

which the system is well behaved.

The nature of this series is more apparent when it is noted that it is a generalized

Taylor series. Consider

f(t) = ax(t) + H[f(t)] (14)

where a is some real number. Since f(t) depends on a, it can be written as f(t, a). Then

f(t, a) = ax(t) + H[f(t, a)] (15)

or

f(a) = ax + H[f(a)] (16)
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because f(a, t) is considered as a function of a only for a fixed time t. Then, under the

usual constraints,

f(a) = f(0) + f'(0) a + f"(0) a + +(0) an + ... (17)

where

f(n)(0) dnf(a)(18)

dan
a=0

If these derivations are obtained from the feedback equation (Eq. 16) and f(a) is expanded

as in Eq. 17 for a = 1, the series

F + F + ... + F + ... (19)-1 -2 -n

that has been developed is the same as the series of Eq. 7. Therefore, the series of

Eq. 7 is a generalized Taylor series for the system, expanded about zero input. Because

of the high degree of continuity required for a Taylor series, it is not surprising that

convergence difficulties should arise.

In an attempt to overcome some of this difficulty, an iteration technique has been

developed to obtain an explicit representation for the feedback system F. Now

F = I + H e F (20)

and the following sequence of approximations for F is formed:

F(1) = (21)

F( ) = I + H[F()] = I + H[I] = I + H (22)

(3) = I + H[_(2)] 
= + H[+H] (23)

and so on. In the limit

lim F(n)  (24)
n-oo

satisfies the equation, and so

F = lim F
- n-(n)

= I+H [I+ H[I + H[ ... ] (25)

The series may be truncated to form an approximation to F.

Some techniques for investigating convergences have been developed. A particular
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case is of interest. If

(26)lH[x]l _< IK[x]

where K 1 is a suitably chosen linear system, and H is a bounded system, then the series

can be shown to converge over any finite time interval for any bounded input. It is also

possible to estimate truncation error. It would be expected that such a limit could be

imposed on most physical systems because of the saturation phenomena.

H Fig. X-3. Multiplicative feedback system.

The convergence of this "iteration series" seems to be easier to study than that of

the Taylor series. Furthermore, the convergence of the iteration series has certain

connections with system stability, and this is being studied. The relationships between

the two series are also being studied.

2. Multiplicative Feedback

A multiplicative feedback system is shown in Fig. X-3. The equations corresponding

to this system are

f = x H[f] (27)

F = I (H, F)

where

f = F[x]

(28)

(29)

Examples of such systems are found in AGC systems and in some FM detector circuits.

It should be noted that H must contain a zero-order term (H ), or the output will be

identically zero. Hence Eq. 27 becomes

f = ax + x H[f]

F = al + I (H * F)

(30)

(31)

As before, the uniqueness of f can be investigated and in the particular case of

bounded H, f is unique.
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The Taylor series form can be developed as before. This gives

F = al + 2I(aH + a2H2) + ... (32)

The iteration series gives

F = aI (33)
-(1)

FZ) = a + I H[aI] (34)

F 3 ) = a + I + I I. H[aI]] (35)

and so on.

Similar studies of convergence can be made. If

KH[x[]l < xK1]x (36)

and H is bounded, and K 1 is some linear system, then the iteration series converges.

D. A. George
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C. PATH AND TREE PROBABILITIES FOR A COMPLETE GRAPH

A probabilistic graph is an ensemble of line graphs and an associated probability

law. The ensemble is generated by first constructing a base graph (set of nodes and

connecting links) and then randomly erasing links in such a manner that in the resulting

ensemble every link is present with a probability, p, and absent with a probability, q,

independent of the presence or absence of all other links.

We are concerned with deriving the probabilities that a path or a tree is present in

the ensemble generated by a complete base graph. (A graph is "complete" if there is

one link between every pair of nodes. A "path" is present in a graph if there exists an

unbroken chain of links connecting two prechosen terminal nodes. A "tree" is present

if there is a path between every pair of nodes.) The choice of terminal nodes does not

affect the path probability in a complete probabilistic graph because of the symmetry

of the graph.
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The complete graph was chosen for this analysis for two reasons. First, the com-

plete graph was an integral part of the base graphs used to prove sufficiency in the limit

theorems of the previous report (1). Second, the complete probabilistic graph is equiv-

alent to an ensemble in which the base graph is chosen at random. In this case, the

probability of a link being present in the ensemble can be thought of as the product of

the probability that the link was chosen for use in the base graph and the probability that

the link was not erased.

This analysis demonstrates the power of the factoring theorem and the intimate

connection between the study of probabilistic graphs and combinatorial analysis. The

following derivation could, in principle, be accomplished by the use of the inclusion-

exclusion technique for calculating the probability of a union of nondisjoint events. That

is, the probability of a tree could be found by listing all sets of links that form trees,

adding the probabilities of these sets, subtracting the probability of all possible pairs

of sets, adding the probabilities of all possible sets taken three at a time, and so on.

The difficulty of this approach is evident when we note that the number of trees in an
n-2

n-node complete graph is n , and the bookkeeping quickly becomes impossible. The

advantage of the factoring technique is that it takes full advantage of the symmetries of

the complete graph.

The factoring technique is based upon the factoring theorem which asserts that the

probability of a path (or tree), P, can be written in the form

P = PP 1 + qPz (1)

where P 1 is the probability of path (or tree) when a selected link is shorted in the base

graph, and P 2 is the probability of path (or tree) when the same link is opened in the

base graph. The factoring technique used in this derivation involves factoring not one

link but many links.

Consider an (n+2)-node complete graph arranged as in Fig. X-4, with the terminal

nodes for which the path probability is to be calculated placed in the extreme right and

left positions, and the remainder of the nodes placed in a column in the center. There

are n nodes in the center column connected by () = n(n-1)/2 links. The derivation of

path and tree probabilities is accomplished by first factoring the graph on all central

Fig. X-4. Desired node arrangement Fig. X-5. Five-node complete
of the (n+Z)-node complete graph.
graph.
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(a) (b)

(c)

Fig. X-6. (a) Links 12 3 factored with probability q

(b) Links 1 2 3, 1 2 3 or 1 2 3 factored with probability 3p q

(c) Links 1 2 3, 123, 12 3 or 1 2 3 factored with probability 3p 2 q + p 3

links, and then calculating path and tree probabilities in the resulting structure. For

example, factoring the (3)= 3 central links in the 5-node complete graph shown in

Fig. X-5 results in the factored structures shown in Fig. X-6a, b, and c. The probability

that each of these structures will occur is obtained by adding the probabilities of the

various sets of shorted links and opened links that can produce them. These probabili-

ties and sets are also given in Fig. X-6. (The notation, ab c, indicates that link a is

shorted and links b and c are opened.)

The general appearance of a factored graph is shown in Fig. X-7. Note that this

structure is completely defined by a partition of n; that is, by an n-component vector

k = (f i,.. i n), where 11 I + 2k2 + ... + nin = n. For convenience, we shall use Ln
to designate the set of all possible partitions, k, of n. Also, we shall denote a set of

i paths joined together at the center node as an i-path. There are three 1-paths, two

2-paths, and one 4-path depicted in Fig. X-7. The correspondence between partitions

of n and factored structures is obtained by letting the i t h component of the partition

vector, i, represent the number of i-paths in the structure. Thus, the partitions (3, 0, 0),
(1, 1, 0), and (0, 0, 1) correspond to the structures in Fig. X-6a, b, and c. It is important

to note that when factoring an (n+2)-node complete graph, a structure is obtained for

each and every partition of n; that is, for every member of the set Ln .

Since the partition completely specifies the factored structure, the probability of a

path and the probability of a tree in the structure is a function only of I. Call these

Fig. X-7. General form of complete Fig. X-8. k-structure with subset of
graph after factoring. center nodes connected to

left node.
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probabilities A(k) and B(k), respectively. Furthermore, denote by M(k) the probability

of obtaining the partition I. Then, the probability of a path, Pp, and the probability of

a tree, PT' can be written in the form

Pp = Z A(f) M(k) (2a)
E L

n

PT =  B(k) M(k) (Zb)
kEL

n

Let us first calculate A(k). The probability that no path exists between the terminal

(right and left) nodes, 1 - A(k), is equal to the probability that the direct link and all of

the i-paths fail. The probability that an i-path does not fail is equal to the probability

that at least one link does not fail between the left node and the center node and between

the center node and the right node, out of the i links that are available for each connec-

tion. Thus,

Probability of i-path failing = 1 - (1 - q )(1 - q )

= q (2- q ) (3)

Taking into account all i-paths and the direct link, the probability of a path existing in

an f-structure, A(f), is

n
A() = 1-q i [qi(Z - q)] i

i=l

= 1 - qn [2-qi] 1 (4)
i=l

The calculation of the probability of a tree in an I-structure, B(), is a bit more

difficult. The attack proceeds as follows. Some of the center nodes of the various

i-paths are assumed to have intact at least one link that connects them to the left node.

The remaining center nodes are not directly connected to the left node. For each i-path

center node connected to the left, there are now i possible links that connect left to

right. This situation is shown in Fig. X-8. A tree is then present if at least one of the

single links that connect left to right is intact and if the center nodes that are not con-

nected to the left are connected to the right.

The probability of these events will now be calculated. The probability P(mi)

that m. out of the I. i-path center nodes have at least one connection intact to the
1 1

left, and that the remaining (i. - mi.) i-path center nodes have no connections intact

to the left, is
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- (5)P(m) = ()(1- q ) 1 (q ) 1 1 (5)

Each of the i-path center nodes connected to the left provide i links connecting left to

right. Thus, including the direct link between terminals, there exist m links between

left and right, where

n
m = 1 + im. (6)

i=l 1

The probability that at least one of these m links is intact is

1 - qm (7)

Finally, the probability that each of the remaining (ki - mi) i-path center nodes have at

least one connection intact with the right terminal is

..- m
(1 - qi) (8)

The probability of a tree, B(E), can now be written. It is only necessary to sum the

product of these probabilities over all possible combinations of the m.. (Although it has
1

not been explicitly stated, this derivation corresponds to an application of the factoring

technique by which all links passing between the center nodes and the left node have been

factored.) - Thus,

1 n n
B(Z) = X ... . (1 - qm ) fI P(mi)( 1 q) -m (9)

ml=0 mn =0 i=1

Substituting from Eqs. 5 and 6 in Eq. 9, and performing the indicated sums, we obtain

n qi)ki n+l qii
B(k) = (1- q 2  q n+ i( - q (10)

i= 1 i= 1

Then it is only necessary to calculate the probability of obtaining an k-structure.

Because of the symmetry of the complete graph this calculation can be broken into two

parts. First, we count the number of distinct ways of assigning n available center nodes

to form the various i-paths of the partition f. If we call this number N(k), then

n!
N () = n (1 1)

S ! !) 1 (n!) n

Equation 11 follows from noticing that there are n! ways of ordering n numbers, but



(X. STATISTICAL COMMUNICATION THEORY)

that every ordering does not result in a distinct partition. In particular, the i sets of

nodes forming i-paths can be ordered in it! ways, and the i-nodes in any i-path can be

ordered in i! ways.

Now, since every node in a complete graph looks like every other node, it is possible

to calculate the probability of a partition for one particular node assignment and then

multiply by the total number of node assignments possible for that partition, N(f). Since

N(I) is the number of distinct partitions, this multiplication is valid because each assign-

ment represents a disjoint event.

Now, what combinations of shorted links and open links can result in a specified par-

tition, k? Well, there must be a sufficient number of links to connect each set of i-nodes

forming an i-path, and all links connecting this set of i-nodes with other center nodes

must be open. Let us assume the following convention. All (Z) center nodes are initially

considered open. This event occurs with probability q . Whenever a shorted link is

used to connect nodes, a factor p/q is introduced into the probability expression. The

numerator, p, accounts for the probability of the link being shorted, and the denominator,

q, reduces the number of links that are open by subtracting one from the exponent(n)
of q . Thus, it is not necessary to count the links that must be open to separate

i-paths from one another, since this is done automatically. That is, all nodes are

assumed to be open unless specifically used to join the i nodes of an i-path together.

The number of ways of joining i labeled nodes together with j links is a familiar

problem in combinatorial analysis (2, 3). Let us introduce the generating function of the

number of connected i-node graphs, Gi(x), where the enumeration is by the number of

links. That is,

G i(x) = gij (12)
j=0

where gij is the number of connected graphs with i nodes and j links, or, in other words,

the number of ways of joining i nodes with j links. The following generating functions

are easily obtained:

G (x) = 1 (by convention)

G2 (x) = x

(13)

G 3 (x) = 3x 2 + x 3

G4 (x) = 16x 3 + 15x 4 + 6x 5 + x 6

An explicit formula for Gi(x) will be given after the discussion of Bell polynomials.
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Now, since gij is the number of different ways of connecting i nodes with j links,
and since each way represents a disjoint event, the probability of connecting a particular

i-path with j links is gij(p/q)J. The probability of connecting a particular i-path with

an unrestricted number of links is Gi(p/q). Since the probabilities are independent for

different i-paths, the probability of obtaining a set of shorted and opened links that

results in a specified partition is

(nG 1
(14)

Thus, by using Eqs. 11 and 14, M(C) is found to be

n!q n

1" n i=1

G.(p/q)
(15)

Combining Eqs. 2, 4, 10, and 15, we obtain for the probability of a path, Pp, and

the probability of a tree, PT' in the (n+2)-node complete graph

-q+n+
1 -q

(2)
q

n! n (2 - q) G.i(p/q)
eL 11! n !  

1  i!
n I n i=l

Y, n!
E L 1 *... " nn

(16a)

(I (1- q2 i i/q i

n+l n 2(1 -q) Gi(p/q) (16b)

Equations 16a and 16b can be

polynomials (3, 4). Let f and y

is defined as

n!f
An(f;y )  

... s

iEL n1"" n"n

n
where s = C ci . For example,

i=l

put into a more satisfying form by introducing the Bell

be n component vectors. The Bell polynomial, An (f;y),

(Yn n

n!
(17)

P =

PT

T-

Y1

G . I n
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Al(f;y) = flY1

2A (f;y) = flYZ + fzy1
(18)

3
A 3 (f;y) = flY3 + f2 (3y 2Y 1) + f 3Y

A 4 (f;y) = flY4 + 4Y3Y 1 + 3y~)+ f3 (6yZy) + f 4Yl

One of the basic applications of the Bell polynomials is in differentiating composite

functions. It can be shown that

Dn f(y(z)) = An(f;y)z n
(19a)

where Dn denotes the n t h derivative with respect to z, and the components of the vectors
z

f and y are

f =D f(y)
s y y=y(z)

(19b)

= D y(z)Yi z

Making use of results presen

tion for complete graphs, G.(x),(x) = A

Gi(x ) = A i {(-1) k - 1 (k-1)!}

ted by Riordan (3), we can express the generating func-

in terms of Bell polynomials, as follows:

{(1+x) k (20)

Equations 16a and 16b can also be conveniently rewritten as

Pn +n+
Pp = I - q +2

An ({1}

and

PT =q An 1(}
{(1-q2i)G( -q + n + 1

where {ai} represents an n-component vector whose i t h component is a i .

Exact expressions for the probability of a path and of a tree in the (n+2)-node com-

plete graph have now been derived. The expressions have a rather simple form in terms

of Bell polynomials. Unfortunately, these expressions are not simple to work with ana-

lytically, and limiting behavior for large n is not known. However, knowledge of the

exact expressions simplifies the search for realistic bounds.
I. M. Jacobs

(21)

A({1} (22)

(2-q)i Gi (0

i
Z(l - q ) Gi (u)
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D. MINIMIZATION OF TRUNCATION ERROR IN SERIES EXPANSIONS OF
RANDOM PROCESSES

In Quarterly Progress Report No. 52 it was shown (1) that a certain set of functions
minimized the truncation error of the series expansion of a random process. A better
proof has been found by using a theorem from functional analysis, and it will be given
in the following discussion.

The theorem (2) reads as follows: If K(t, s) = Kl(t, s) + K2 (t, s), where K(t, s), Kl(t, s),
and K2 (t, s) are positive definite kernels and K 2 (t, s) has only a finite number, N, of
eigenvalues, then

'i+N '< li i = 1, 2,... (1)

where Li and gli are the eigenvalues of K(t, s) and Kl(t, s), respectively, and are so
arranged that

L1 >  2 3~

11 12 > [L13 >  " "

Now we consider the problem of the minimization of the truncation error. This error
is defined as

N[{ntl(t) E x(t) - an n (t)j dt (2)
a n=l

where x(t) is a random process with correlation function R(t, s) and {~n(t)} is any set of
N orthonormal functions. The a 's are the Fourier coefficients. We shall show that
the complete orthonormal set of eigenfunctions {n(t)} of the integral equation

b R(t, ) (t) dt = n n ( s ) a < s< b (3)
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where

1 > PZ ' P3 "'

minimizes this error, so that

min N[{ (t)}] = N[f n (t)}] =
{Tn (t)} n=N+1

It was shown in the previous report (3) that

N[{n(t)}] = fb

N
R(t, t) dt - Z Xnn

n=l

r = a {a2nn n

For the set {n(t)} (see ref. 4) nn = Pn, so that

N
R(t, t) dt -

n=1

Let us form the kernel

N
K2 (t, s) = Z Xnnn(t) n(S)

n=l

and consider R(t, s) as the sum of two kernels, as follows:

R(t, s) = [R(t, s) - KZ(t, s)] + K 2 (t, s)
(10)

SKl (t, s) + K 2 (t, s)

We know from Mercer's theorem (5) that any positive definite kernel K(t, s) can be

expanded in a uniformly convergent series of eigenfunct'ions,

oo

K(t, s) = Z i 1 .i(t) ri(s)
i=l 1

(11)

where pi and ri(t) are the eigenvalues and eigenfunctions, respectively, of K(t, s).

grating term by term, we have

Jab 00
K(t,t) dt= . i

a i= 1

Inte-

(12)

where

(6)

N[ n(t)}] =f b
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Applying this to Eq. 8, we have

00

N[{n(t)}] = Xn=l

N 00

n =l n N n
n=1 n=N+1

We do the same thing for K l (t, s) and obtain

K 1 (t, t) dt = R(t, t) dt - K2 (t, t) dt
fb 

Ja

and we have, from Eqs. 9 and 6,

K l (t, t) dt = R(t, t) dt - nn = n(t)}]
After applying relation 12, it follows thatn=1

After applying relation 12, it follows that

a b
a

00

Kl(t,t) dt= Xi
i=l1

where the Xi are the eigenvalues of Kl(t, s). Now we apply Eq. 1

Eq. 13, to obtain

N[ n(t)}] = a

00

KI (t, t) dt =
n=1

00

Xn > n
n=1

Pn+N
n=N+1

of our theorem and

P N[{ n(t)l}] (17)

N[P{n(t)}] > N[1{n(t)}] =

00nN+

n=N+1

which was to be proved.
K. L. Jordan, Jr.
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E. A SAMPLING THEOREM FOR STATIONARY RANDOM PROCESSES

Let [x(t)] be a stationary process with correlation function x(T), and let [f(t)] be

a process (in general, nonstationary) generated as follows.

If x(t) is a particular member of the ensemble [x(t)], then f(t), the corresponding

member of the ensemble [f(t)], is given by

N
f(t) = x(nT o ) s(t- nT0 )

n=-N

where the sequence {x(nTo)} represents samples of x(t) taken uniformly over a finite

time interval (-NT o , NT ), and s(t) is an interpolatory function to be determined.

We wish to discover what interpolatory function, s(t), will give us best agreement

between f(t) and x(t) during the time interval (-NTo, NTo) for all members of the

ensemble [x(t)]. By this "best agreement" we mean that we wish to minimize

NT

I= 1
I -NT

!I,,

E -[[x(t) - f(t)2] dt

where E * [ ] stands for ensemble average of [

Letting gN(t) be a function that is one in the

where, we find from our previous work (1) that

as follows:

o m=-N -oo=- ZNTo

0 k+N

k=-2N m=-N -

2N N c

k= 1 m=k-N -oo

].
time interval (-NTo, NT ) and zero else-

the expression for I may be rewritten

gN(t)[-2 x(t - mT o ) s(t - mTo)] dt

x(kTo) s(t - mTo) s(t - mTo + kT ) gN(t) dt

co

o

x(kT ) s(t - mT ) s(t - mTo + kT ) gN(t) dt + C

in which C is E * [(x(t))2]. (Note that Eq. 3 is corrected from Eq. 3 in ref. 1.)

We now make a change of variable, u = t - mT , and interchange the orders of sum-

mation and integration. Then we have
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SooI =ZNT

k=-2N

N

SgN(u + mTo0 )
m=-N

x(kTo) s(u +kTo) ] . s(u) •
k+N

m=-N
gN(u + mTo )

+ x1 x(kT ) s(u+kTo) * s(u) •[Nk= 1

N

m=k-N gN(u+mTo)j du + C

The expression

N

f(u) = Z gN(u + mT o )
m=-N

can be described as follows.

= 2N

= (2N - 1)

f(u)

=1

= 0

for IuI -< T

for T O < ul < ZT °

for (ZN - 1) T O < ul < ZNT °

elsewhere

Let

k+N

= gN (u +
m=-N

fk(u) N

= gN( u +
m=k-N

=0

Note that f (u) = f(u), and fk(
We can rewrite Eq. 4 as

I = # [-Zx(u) s(

nT o )
for -ZN < k < 0

for 1 k < ZN

for all other k

mT o )

u-kTo) = f_k(u)

u)] • - f(u)

ZN
+ s(u) k Z x(kTo)

k=-2N
* s(u+kT ) . I0ZN fk(u)j du + C

If we now substitute s(u) + ETI(u) for s(u) in Eq. 5 and assume that the function s(u)

minimizes I, then a necessary condition for I to be minimum is that

[-4 x(u) . s(u)] •
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In our case,

1oO 1u[- f(u)] du1 (u) Z x(u) • duT0 _00 o

2N
TI(u) k=-ZN

2N
s (u) X

k=-2N

4x(kTo) s(u+kTo)

x(kT o) rl(u + kT o )

Making the change of variable, w = u + kT o , in the last integral,

Sx(kTo) = 4x(-kT ), and fk(w -kTo) = fk(w), we have

- 1 (u). -fx(u) - +
=0 o r(o

2N

k=-ZN

and noting that

4x(kTo) • s(u+kT ) .2Nj du

Since r(u) is arbitrary, our necessary condition for I to be minimum becomes

f(u) 2N fk(u)
px(u) TN = x C P(kTo) . s(u+kT ) ZN

k=-ZN
(6)

Let us now consider some properties of the solution of Eq. 6. Since f(u), fk(u), and

fk(u) are all zero for lul > ZNT o , s(u) is arbitrary for lul > ZNT . For simplicity,

we shall let s(u) be zero for lul > 2NT .

For the special case in which (kTo) = 0 for k = ±1, ±2, ... , ±2N, Eq. 6 becomes

f(u)x(u) • N= x(0) s(u) f(u)
ZN [since f(u) = fo(u)]

The solution is

s(u) =
x(0)

s(u) = 0

for ul < ZNT

for lul > 2NTo

Another example is given by the following case:

aI

E=0
=0

I

E=0

fk(u)] du

2N du

fk(u)1

ZN du

f 00f c

+ 0oo -f 0
o -oo
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(T7) = 2 -

'x(T) = 0

IT

T-
for 0< JT1 ~ 2T

In this case, Eq. 6 may be written as follows for N = 1:

1 =1 s(u-To)
o0

11 + 2 • s(u) 1 + 1 • s(u + To) 2

with 0 < u < To, and as

1 1
s(w-To) . +2 . s(w) -

02 2

forT < w < 2T.
o o

The form of Eq. 6 indicates that we should look for a symmetric solution, that is,
we assume that s(u-T o) = s(T o - u). Making the change of variable, w = u + T , gives

us the following system of equations which is valid for 0 < u < To:

T s(T -u) + 2s(u) +-1 s(u+T )
o

a 1 i - s(u) + s (u+T )

A solution to these equations (one that satisfies the conditions at u = 0, u = +T O,

and u = +2To) is

lul{ 1
T

s(u) o

=0

for 0 < lul < T0

elsewhere

Let us now substitute Eq. 6 in Eq. 5 to obtain an expression for the minimum value

of I (when 2N + 1 samples have been taken). We shall call this minimum value I2N+1'

It is given by the formula

1 u f(u)
-2N+1C (u) s(u) 2N duZN+ iC Tfo -0o

For the special case that has just been discussed, C is 2. From the definition of

f(u) we recall that f(u)/2N is 1 in the interval (-To, To), and s(u) and '(u) have been

defined. Thus Eq. 7 becomes

elsewhere

( -0u

( W =I .
T ) 2

(Z TO
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2N+1 T 0 T o dT

f o _ T ) ( dT
20 ZT T 

= 2 -1 T--

0

1 -TT2 3

We might interpret this in terms of a ratio of average signal power to average

"noise" (or error) signal power into a unit resistor load. For our special case,

S 26
N 1 1

3

We have been discussing the reconstruction, over a finite interval, of a member of

a stationary ensemble from a finite number of uniformly spaced samples. We have

constrained the problem by requiring that each sample be treated the same; that is, the

same interpolatory function is used for each sample value.

We now turn to the case of reconstruction from an infinite number of samples. (As

before, we do not restrict [x(t)] to be bandlimited.) In this situation, f(t) is given by

f (t) = x(nTo) s(t-nTo)
n=-oo

As Bennett (Z) has shown, [f(t)] is a cyclostationary process, that is, its statistics vary

periodically with period T o . Thus it is reasonable to minimize I, as follows:

I T 1 E. [x(t) - f(t)] dt

T o TLC - 2 Z x(t-nT ) s(t-nT0 )
To n=-oo

+ I X x(nTo-mT o ) s(t-mTo) s(t-nTo dt
m, n-oo

Letting u = t - nT , we have
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I (-n+ )T
I = C To

on=-oo -nT
0

m=-oo
m =--o

L2 x (u) s(u)

(nT -mT ) s(u+nT -mT )] du

Making the change of summation index, k = n - m, and then carrying out the summa-

tion on n, yields

I= o - Zx (u) s(u) - s(u) 4x(kTo) s(u+kTo)] du
k=-o0

A necessary condition for I to be minimum (by varying s) is that

x (u) = Z
k=-oo px(kTo) s(u + kTo)

If 1 (f) is the Fourier transform of x(u), then Eq. 9 may be written in the frequency

domain as

+j2kTrT f

%x(kTo) e o

tl(f)

k=-oo
'x(kTo) cos 2TrkTof

where S1 (f) is the Fourier transform of s(t), provided that the series in the denominator

has no zeros, where 41 (f) is nonzero.

The analysis given by Bennett (3) shows that we can rewrite Eq. 10 as

Sl(f) = oo

T I(f -nfr)
o n=-oo

(11)

where fr = l/T .

In terms of w = 2Trf (and thus wr = a2r/T ), we have

2 #(w)
2 Tr S(w) =

oo

T I (w-nwr)
o n=-co

with the definition F(w) = I f(t)
2 Tf-0

T •(w)
or S(w)= 0

2rr (w-nwr )
n=-oo

(12)

e - jwt dt used.

We can obtain an expression for the minimum value of I, which we shall call I , by

substituting Eq. 9 in Eq. 8. Thus

(8)

Sl(f) = 00k (10)



(X. STATISTICAL COMMUNICATION THEORY)

I=- C - x(u) s(u) du (13)

Use of Eq. 12 or Eq. 11, and Parsevalls relation, yields

rco [ (w)]2
I = C - dw (14)

0 Z (w -nwr)
n=-oo

or

I = C - df (15)
-o CcZ 1(f -nfr )

n=-co

It is clear from Eq. 11 that S 1 (f) [and hence S(w)] is well defined for all values of f,

because of the fact that 1 (f) must be everywhere non-negative. That is, the zeros of the

denominator are, at most, only the zeros of 1l(f). No extra zeros can be added.

For the special case in which 1(f) is zero outside the range (-W,W), and

f > 2W [i. e., T - 1/(2W)], we have as one solution

= T for Ifl W

= 0 elsewhere

2W sin 2Wt
s(t)- f 2Wt

r
and

I=C- f (f) df = O

D. W. Tufts
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F. NONLINEAR OPERATORS - CASCADING, INVERSION, AND FEEDBACK

This report is concerned with some of the properties of cascades of nonlinear opera-

tors and with methods of inversion. The formulas of Brilliant (1) and Barrett (2) are
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related to trees and partitions and are tabulated for convenient reference in sections 2

and 3. An inversion algorithm is presented and is used for determining the inverse of

a polynomial, as well as for studying the effects of feedback on the nonlinear distortion

of an amplifier.

The problem of inversion is crucial in nonlinear theory, for the solutions of nonlinear

operator equations can be expressed as inverses. Thus, with the use of George's (3)

notation, the solution of

z(t) = H[y(t)] (1)

is

-1
y(t) = H-1[z(t)] (2)

where y(t) and z(t) are a pair of functions of the independent variable t, and H is the

operator whose inverse is being sought.-1
The inverse H-1, itself, is a solution of the operator equation

H*K=I (3)

in which K and I are the unknown and the identity operator, respectively, and the sym-

bol * denotes "cascading," that is, application in sequence.

As a consequence of Eq. 3, inversion and cascading are intimately related, and cas-

cading merits study.

1. Cascading of Polynomial Operators

We deal with those nonlinear operators that can be represented by polynomials in

integrals, in this manner:

z(t) = kl(t-r) y(T) dT +ff k 2 (t-', t-T 2 ) y(T 1 ) (T2)) dT 1 dr 2  ... (4)

The kernels kl, k 2 , ... completely specify each operator.

When two operators are cascaded, as in Fig. X-9, a new operator results. As

Brilliant (1) has shown, its kernels can be determined from those of the original oper-

ators by means of standard transformations. These are derived by substituting a

polynomial with undetermined kernels for y(t) wherever y(t) occurs in Eq. 4. Terms

of equal order in y(t) are collected after the

orders of integration have been interchanged

(2). The resulting expressions are sums of

multiple convolutions of the original kernels.

Fig. X-9. Cascaded operators. For example, the kernel of order 2, denoted
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by (k*h)2 is given by

[k*h]Z(T 1 , 2 ) = kl(-) h 2 (T 1 -$ - ) dr

+f k 2( 1 ,' 2) h1(T 1  1) h T -o2) dcrldu Z  (5)

Integrations can be eliminated by taking a Fourier transformation (of two variables)

of Eq. 5.

[K*H] 2 I1 pZ) =f [k*h] 2 (T 1, T1) exp[j(wlT1 + 2,2)] dTldT2

= K 1(W + W) H1 (W1', 2 ) + K2 (, W 2) HI(W1 ) H1 (W2 ) (6)

The spectrum of the cascaded kernel of order 2 (and of every order greater than 2)

is therefore a sum of products of spectra, instead of the product that is encountered in

linear theory. Fourier transforms of several variables are discussed by Van der Pol

and Bremmer (4). Other cascading equations are listed in Table X-1.

2. Inversion of Polynomial Operators

The inverse H- 1 of the operator H is given by a solution for K of the equation

H * K = I (7)

in which I denotes the identity operator.

If the inverse has a representation in polynomial form, it can be determined by sub-

stituting a polynomial with unspecified kernels for K in Eq. 7, collecting terms of equal

order on both sides of Eq. 7, and solving the resulting infinite set of equations. If these

equations are arranged in their natural order, they can be solved in that order, for then

each contains only one unknown. Thus the equation of order 1 is

H 1(o) K 1 (w) = 1 (8)

whence

K)(9)
H1 )

just as in the linear case.

Next, we have
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K 2 (wlv 2 ) H 1(W1 ) H 1(c 2 ) + K1(W1 + o2 ) H 2( 1' 2) = 0 (10)

whence, with the use of Eq. 9,

H2 ( 1 ' 2 )
K 2  ) = - H1 ( 1 ) H1 ( 2 ) H ( 1 W (11)

This procedure is, of course, valid only as long as the inverse has the specified

form, and then only for sufficiently small inputs that are within the circle of convergence

(1). Such a solution exists whenever the original operator has an invertible linear term.

However, when it does not, the method fails, even though an inverse may exist. For

example, although a square has an inverse - the square root - that inverse exhibits

infinite slope at the origin, and cannot be represented by a power series in that vicinity.

These results were obtained by Barrett (1), and Brilliant (2), and are entirely anal-

ogous to those for ordinary polynomials (5). Cascading and inversion polynomials are

listed in Tables X-1 and X-2 for reference. They are related to the Bell polynomials,

which are discussed by Riordan (6). They are derived in an asymmetrical form for

operators that are themselves symmetrical.

Table X-1.

Cascading Polynomials (Orders 1-4).

[K*H] 1 (w) = Kl(() H 1 (cW)

[K*H] 2 (l,'w 2 ) = K 1( 1 +W2) H 2 ( l' 2 ) + K 2 ( l' 2 ) H 1(, 1 ) H1(' 2 )

[K*H]3(w1'2'j3) = K1 (W1 +W2 + W3)H3( 1' 2', 3)+ 2K2 (W1' 2 +W3)H1 (0 1)H2(2 + w3)

+ K 3( 1, 2, 3) H 1( 1 ) H 1(c2 ) H 1( 3)

[K*H]4(1' Z, 3 o4) = K 1(W 1 + 0 2 + 3 + 4) H 4(W1' ,o 2 , 3 , 4 )

+ 2K 2 (4 1 ,o 2 + 3 + (4) H( 1o l ) H 3 (02 ,W 3 ,' 4 )

+ K 2(W1 +W2' 3 + W 4) H 2 (¢1' 2 ) H 2 (W3' W4)

+ 3K 3(l'W2,W 3 +W4) HI(W1 ) H 1(c02) H 2 (W3,W 4)

+ K 4 (W 1 + + 0W3 + W 4 ) H 1( 1) H 1(W 2 ) H 1(W3 ) H 1( 1 4 )
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Table X-2.

Inversion Polynomials (Orders 1-4).

[ 1  1

H2 (W 13 W 2 )

1 ]2 2H(1) H 2 1 1)| H I3 H2( HWI+3
"

[ -1]3(c1,a 13)2 + -( H3 H(o '+2' 3) +2H2 ' 03) 2 3
(H ' 3 Hl( 2 + 3 j

H 1 1 o2 3+ o3 3 i=l Hi(i)

[H- 1]4 1' 'c 3) 41 4 H (i )  1 2. 3) 4H 1 1 + 3 4 1 H ( )

2H 2 ( 1 2 + o3 + 4) H 3 (2' c3' 4
+ Hl2 + o3+ o4)

3H3(( 1,2' 3 + W4) H2 (W3' W4 )

4H 2( 1 1 2 + 3 + W4 ) H2 (W 2 W 3  4+ W4 ) H 2 (c 3' W 4 )

H1(WZ + 2 3 + W4 ) H 1 (W 3 + W 4 )

Table X-3.

Feedback Polynomials.

G1) 
1 (+H)

G n(l, ... cn), n > 2 is derived from [H-lIn(wl' n) in

Table X-2 by replacing H 1 with 1 + H1 and changing signs.

3. Feedback

When an operator H is placed in a feedback loop (Fig. X-10), the resulting operator,

G, is given by any one of the following equations:

G = I - (I+H)- 1 (12)
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-1G =H (I+H) (13)

--1G = (I + H) (14)

G = H ,(I-G) = I - H * G (15)

These equations are valid only when the indicated inverses exist. (When H is a

polynomial operator, (I+H) has an inverse in some vicinity of the origin whenever its

linear part is invertible.)

Equation 12 indicates that the feedback polynomials can be derived from the inver-

sion polynomials by replacing H 1 with 1 + H 1 wherever H 1 occurs, and changing signs,

except in the case of G 1 which is given by

1 HI()

G () = 1 -H (16)
S = 1 + H 1() 1 + H 1() (16)

4. Partitions and Trees

The structures of the cascading and inversion polynomials can be related to the

structures of trees and partitions, respectively. This provides a relatively easy means

for writing them, and offers some insight into the behavior that they describe.

A partition of order n is a division of n identical objects into s cells. The repre-

sentation (10:3, 3, 2, 1, 1), or that shown in Fig. X-11, denotes a partition of 10 objects

into 5 cells containing 3, 3, 2, 1, and 1 objects, respectively. This partition has two

"repetitions" of 3, and two of 1. We associate a coefficient, a, with each partition,

which is the number of its rearrangements and is given by

s!
a = r! (17)

where rl, r 2 , ... are the numbers of repetitions. In our example,

5!
a - - 30

A tree of order n is a sequence of partitions, the first of which has order n,

+ t

3 3 2 I i

Fig. X-10. Operator in a feedback loop. Fig. X-11. Representation of a partition.
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terminating in cells containing only ones. It is denoted by the graph shown in Fig. X-12.

8

A3 3 2 Fig. X-12. Representation of a tree.
I 2 1 I I

The "multiplicity" m of a tree is the number of its partitions or nodes (m = 5 in

Fig. X-12). The number of rearrangements of a tree, b, is the product of the coeffi-

cients a for all the partitions. It is

3! 3! Z! 2!b = X x2!X X 6
2! 3! 2! 2 !

The cascade spectrum of order n, [k*h]n, is a sum of terms of positive sign. There

is one term corresponding to every possible partition without regard to arrangement of

order n, multiplied by the associated coefficient a. The correspondence is most easily

illustrated by an example.

The spectrum [k*h]l0 has a term corresponding to the partition (10:3, 3, 2, 1, 1) and

that term is

30K 5( 1 + + 31W 4 + W 5 + 6' 7 + W 8 -W9' W1 0 ) H 3 (W1,° 2 , 3 ) H 3(W4' ,5' , 6 )

Hz ( 7o 8) H 1( 9) H 1 ( 1 0 )

There is a single K-factor of order s (5, in this example) whose independent variables

are sums of frequencies occurring in cells of 3, 3, 2, 1, and 1. There are s H-factors,

each with the order and variables of one of these cells. The arrangement of the cells

and the assignment of the subscripts is immaterial, as long as the indicated pairing is

maintained.

There is a similar correspondence between inverse spectra and trees of the same

order. An inverse spectrum of order n is a sum of terms, one for each partition of

order n, with a coefficient (-l)m b. Thus [H-1] 8 has a term corresponding to the tree

in Fig. X-12 and that term is

(-1) 5 X 6 X H 3(W + W z + W3 W 4 5 + O 7 + W 8 )H 3 (W1', 2 , 3 ) HZ(W4 + W 5 ,0 6 )H2 (7, 8 )H 2 (w4 ' 5)

i=1 H(i)H1 1l2 + 3 + 4 5 +6 +7 +8)H1 + 32+ 3)i(H1 4 5+W ++6)H1 (7 +w8) H1 4 +5 )

The numerator is constructed by inspection of the tree, one partition at a time. The

denominator has an H 1 factor for every H factor in the numerator, with a sum of the

variables that occur. The subscripts correspond to downward paths in the tree.
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The analogy between inverses and trees and the fact that a tree is a sequence of par-

titions, which are themselves analogous to cascades, suggests that an inverse might be
constructed out of a sequence of cascades. This reasoning led to an algorithm, for which

a simpler derivation, which is given in section 5a, was found later. It has also been

found that this algorithm is a generalization of one of Newton's approximation methods

for polynomials.

5. An Algorithm for the Inverse

a. Theorem

The inverse of any polynomial operator that has an analytic inverse can be repre-

sented by an algorithm; the nth cycle of the algorithm differs from the true inverse, at
most, with respect to terms whose order is greater than n. Sufficient (though not neces-
sary) conditions for the convergence of the algorithm are stated in section 5c.

Consider a polynomial operator H that has an analytic inverse, H-1. Denote the
linear part of H by Hi, and the strictly nonlinear (7) remainder by H, so that

H = H 1 + H5 (18)

Let An be the nth cycle of the algorithm

An = (H) 1 - (H 1 * H * {(H 1)- - (H)-1 * H * . . . (H) -  . . (19)

which is shown schematically in Fig. X-13. Let En denote the resulting error operator,

En = H-1 - An (20)

Then En has no terms whose order is less than (n+l). We denote this fact by the equation

N(E n ) = n + 1 (21)

in which N(H) denotes a lower bound to the order of the lowest-order term of any
operator H.

This representation is significant in that it expresses the inverse of a nonlinear

LINEAR PART, (An)

(H I) -
NONLINEAR PART, (A!)

Fig. X-13. N t h cycle, A n , of an inversion algorithm.
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operator explicitly in terms of its nonlinear part (which is specified) and the inverse of

its linear part (which can be determined by the usual inversion methods of linear theory).

b. Proof of "Low-Order Convergence"

We develop an implicit formula for the inverse. Let K denote the inverse of H.

That is,

H K=I (22)

Decomposing Eq. 22 into linear and strictly nonlinear parts (7), we have

(H 1 + Hg) * (_KI +_K) = I (23)

Since H is linear and therefore distributive,

H *K +H +H *(K + K)= (24)
-1 -1 1 g ( 1

Since H * K is the only term on the left-hand side that is linear [for, by construction,

N(Kg) = N(Hg) = 2, which ensures that the remaining terms are strictly nonlinear (7)],

and I is linear, we can split Eq. 20 into two parts:

H *K 1 =I
(25)

H 1 K +H* (K 1 +K) O

Solving the linear equation and substituting the result, (H 1)-, in the nonlinear equation,

we obtain an implicit formula in which K is the only unknown:

Kg = - (H 1 ) - 1 * -H * (H )-I +K} (26)

This is the basis for our algorithm (Eq. 19).

Next, we develop an iteration formula for E n , whicn will allow us to prove our con-

tention. By our definition, Eq. 20,

En = K - A n  (27)

whence

En - K = -An
(28)

n-i n-l
E n - 1 - K = -A n - 1

but, by inspection of Eq. 19,
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n  -1 -1 n-1A = (H) - (H1) H An (29)

therefore, using Eqs. 28 and 29, we have

-1 -1 I n-1}

E n - K = -(H 1  + (H) * H * - (30)

or, using an equation similar to Eq. 18 for K on the left, we have

EIn (H 1 * (H)* {K- En -l} + K (31)

Substitution of Eq. 26 for K yields our iteration formula

En = (i)-I n - l  (H )- *K (32)

in which we have gathered K and (H )- into K.

Now, for any equation of the type

A = B * (C_+D) -B * C (33)

it is true that

N(A) > {N(B) - 1} min {N(C), N(D)} + max {N(C), N(D)} (34)

(This is a fairly obvious property of the order of the lowest-order terms of polynomials.)
Since N{ (I -1 * H 2, while N(K) = 1, applying Eq. 34 to Eq. 32, we obtain

N(En ) >1+ N(En- )  n + 1 (35)

where the second inequality in Eq. 35 follows by induction because N(E1) = 2. This
completes the proof of the property that we shall refer to as "low-order convergence."

We wish to emphasize that this property is the result of the absence of a linear term-1
in the operator (H) 1 * H which operates once in every cycle. The feedback algorithm
generated by the formula

G = H * (I-G) (36)

does not have this property.

If the operator H lacks higher-order terms as well, then low-order convergence

proceeds at a rate of more than one per cycle. We shall call the operator (HH) * H

the "constrictor" of the algorithm.

c. Metric Convergence

Although the algorithm An converges in low order, it does not always converge in a

metric (8) sense. (But the former ensures that the latter implies convergence to H-1.)
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The necessary conditions for metric convergence are not understood. However,

sufficient conditions are easy enough to find. Thus it is sufficient for the constrictor

(H1)-1* H to be a contraction (9). [Contractions are discussed by Kolmogoroff and

Fomin (10).]

It follows from the definition (9) of a contraction that if X is such an operator, while

P and Q are arbitrary, then

IX P - X QII a lP-Q , a< 1 (37)

in which the vertical bars denote norm (8) in the metric.
-1

Since (H)-1 H is a contraction and, from Eq. 30, we have

En = (H)- 1 * H * {K - En-1 (H)- * H * K (38)

we can apply inequality 37, which yields

aln 11 En-11

< an-1 El

= an-1 K~, a < 1 (39)

Hence the error term is reduced by a factor less than a in each cycle, and convergence

is ensured.

Alternative methods of producing contractions, for example, by splitting into other

than linear and nonlinear parts, are being studied.

d. Bounds on the Lipschitz Constant, a

The existence of a contraction is investigated by a study of the constant a.

For any ordinary polynomial in one variable a is simply the maximum slope.

A linear operator whose kernel is k(T) has:

a< I k(T)I dT (40)

For a cascaded pair and for a product of operators the product of the individual

coefficients is the pair coefficient. For a sum operator it is the sum of the individual

coefficients.

A bound on a for the general polynomial operator is obtained as follows. The abso-

lute difference between two outputs yl(t), y2 (t) corresponding to any two inputs x1 (t), x 2(t)

is given by
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jYl(t) - 2 (t) I = .. . kn(t - T... t - T) ([x(T) X(T)]
n= 1 -oo -oo

- [X 2 ( 1 ) ... X 2 (Tn)} d T 1 ... dTn (41)

00

< Z 1 [xl1) x1 n)] -[X2(T1)... XZ(T n)]ll
n=l

00
x -0o

IL xi() - xz()i C {I xl(T)I + Ix2(T) I}n - 1
n=1

00
x100

(42)

(43)

where the last inequality has been derived as follows: Let

(x 1 (T 1 )... X(Tn) - x(T 1)... . . x(T n)) = Dn

(44)

Therefore

Dn+l 1 = [x ) x2 1 )] Sn + [xl n+1) + x 2(n+1)] Dn

n+l 1 [x ) + x2 )]Sn+ [xln+l)- x n+)] Dn

(45)

Denoting lx1(T) - X2(T)II by 5 and Ilxl(T)II + IIXZ(T)11 by a-, and applying the triangle

inequality to the absolute values of Eqs. 45, we obtain

Dn+1 <1 6 1 S
n 1+ a Dn

(46)

1Sn+1 6 1Dn + l Sn

(Equations 45 and 46 were suggested by I. M. Jacobs.)

Since 6 < 0- by definition, it follows from Eq. 46 that if the following equations are

true for n, then they are true for n + 1.
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Dn < 6
n -1

(47)

sn a- n

Moreover, Eqs. 47 are true for n = 1, so that they are true for all n, by induction.

Hence Eqs. 47 can be written:

IDnl = I[Xl ) . . . x ( n)] -[xZ(I) . . . x (n)] (x1(T) -(xZ(T) 1 X1(T) 1+ Ix2(T) n-1

(48)

This is the inequality that was used in Eq. 43.

of a) that

a= max {II(lI + x n- .
x1 (T), x 2 () n= 1-

Equation 43 implies (by the definition

I d1... dTn

(49)

If all inputs are bounded by

i = 1,2 (50)

then we can apply expression 50 to

ative, which gives

oo

a< max- n- a On ,
8< ZB n=1

Eq. 49 and express the result in the form of a deriv-

an= ...
oo -o

(51)

Thus a is bounded by the maximum slope of a polynomial in 8 on the domain 0 < ZB.

This is a very general bound, and consequently will usually give pessimistic results.

Better bounds can be fitted to individual circumstances.

e. An Example

A nonlinear operator without memory has the sufficient requirements of section 5c

if the maximum absolute value of the slope of its nonlinear part is less than that of its

linear part. Such a nonlinear operator without memory has been drawn at random in

Fig. X-14, and the successive cycles of its algorithm are shown in Fig. X-15.

6. Feedback Algorithms

The inversion algorithm can be applied directly to the solution of feedback problems

by means of the feedback equations, Eqs. 12, 13, and 14.
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Fig. X-14. Nonlinear operator without
memory and its inverse.

TRUE INVERSE

I stAPPROXIMATION

Fig. X-15. Successive approximations
to the inverse.

--

Fig. X-16. Linear-nonlinear-operator-without memory
pair in a feedback loop.

LINEAR PART OF G

GI ( ) ( b K) s ob
S . (c~b*K) sa o

APPROXIMATION TO

(N) 1-G (w) THE NONLINEAR
DISTORTION IN G,
WHICH INCLUDES A
QUADRATIC TERM

Fig. X-17. Second approximation to a high-gain amplifier with feedback.

Fig. X-18. Nonlinear operator without memory, N, its inverse, N-
and the nonlinear part of its inverse, (N-1 ).
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For example, we wish to study a linear operator L, cascaded with a nonlinear oper-

ator without memory, N, in a feedback loop, as in Fig. X-16.

We pick the feedback equation that gives the best rate of convergence. Thus if L is

a high-gain bandpass amplifier with spectrum

L() Ks (52)
S(s+a)(s+b)

and the input spectrum is negligible outside the high-gain parts of the passband (so that

frequency distortion occurs at the edges of the passband), then rate of convergence will

be high for high gain if the norm of the constrictor varies inversely as the gain. Equa-

tion 14 accomplishes this, for, applying the algorithm to it and simplifying, we obtain

G = H * (I+L) 1 - (I+L) * (N-)~ H * (I+L) - (I+L)- 1  (N')1 . . . (53)

and if we restrict inputs to the vicinity of the passband, I (I+L)- 1 varies approximately

inversely as the gain.

The norm of (I+L)- 1 * (N-), is

S(I+L) - 1 * (N-1) = as

in which a is the norm of (I+L) - 1 , and s is the maximum slope of (N-1) (normalized

with respect to (N- 1 I )

If the gain is 100 and the half-power points are 20 and 20, 000 cps, a is less than 3,

so that s less than 0. 33 ensures convergence, whatever the input is. However, if we

exclude very low and very high frequencies, a assumes a much smaller value.

The second approximation to G is given by the system shown in Fig. X-17. The error

in the linear and quadratic terms is zero, while that in the nonlinear part is less than

100 as per cent. (N- 1 ) is obtained graphically, as shown in Fig. X-18, by reflecting the

graph of N about the 45 line and subtracting it.
G. D. Zames
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