27,503 research outputs found

    Disk and elliptical galaxies within renormalization group improved gravity

    Full text link
    The paper is about possible effects of infrared quantum contributions to General Relativity on disk and elliptical galaxies. The Renormalization Group corrected General Relativity (RGGR model) is used to parametrize these quantum effects. The new RGGR results presented here concern the elliptical galaxy NGC 4374 and the dwarf disk galaxy DDO 47. Using the effective approach to Quantum Field Theory in curved background, one can argue that the proper RG energy scale, in the weak field limit, should be related to the Newtonian potential. In the context of galaxies, this led to a remarkably small variation of the gravitational coupling G, while also capable of generating galaxy rotation and dispersion curves of similar quality to the the best dark matter profiles (i.e., the profiles that have a core).Comment: 5 pages. This paper is based on a talk given by D.C. Rodrigues at the I CosmoSul meeting (Rio de Janeiro, RJ - Brazil. August, 01-05, 2011). To be published in AIP conference Proceeding

    Galaxy rotation curves from General Relativity with Renormalization Group corrections

    Full text link
    We consider the application of quantum corrections computed using renormalization group arguments in the astrophysical domain and show that, for the most natural interpretation of the renormalization group scale parameter, a gravitational coupling parameter GG varying 10−710^{-7} of its value across a galaxy (which is roughly a variation of 10−1210^{-12} per light-year) is sufficient to generate galaxy rotation curves in agreement with the observations. The quality of the resulting fit is similar to the Isothermal profile quality once both the shape of the rotation curve and the mass-to-light ratios are considered for evaluation. In order to perform the analysis, we use recent high quality data from nine regular disk galaxies. For the sake of comparison, the same set of data is modeled also for the Modified Newtonian Dynamics (MOND) and for the recently proposed Scalar Tensor Vector Gravity (STVG). At face value, the model based on quantum corrections clearly leads to better fits than these two alternative theories.Comment: 35 pages, 12 PDF figures. v4: Version accepted in JCAP. Improved comments on the galactic gas effects to our model, stressed the relevance of our MOND and STVG fits, slightly extended discussion on our perspectives and minor additional comments. Ref's added

    On duality of the noncommutative extension of the Maxwell-Chern-Simons model

    Full text link
    We study issues of duality in 3D field theory models over a canonical noncommutative spacetime and obtain the noncommutative extension of the Self-Dual model induced by the Seiberg-Witten map. We apply the dual projection technique to uncover some properties of the noncommutative Maxwell-Chern-Simons theory up to first-order in the noncommutative parameter. A duality between this theory and a model similar to the ordinary self-dual model is estabilished. The correspondence of the basic fields is obtained and the equivalence of algebras and equations of motion are directly verified. We also comment on previous results in this subject.Comment: Revtex, 9 pages, accepted for publication PL

    Modified gravity models and the central cusp of dark matter haloes in galaxies

    Get PDF
    The N-body dark matter (DM) simulations point that DM density profiles, e.g. the Navarro Frenk White (NFW) halo, should be cuspy in its centre, but observations disfavour this kind of DM profile. Here we consider whether the observed rotation curves close to the galactic centre can favour modified gravity models in comparison to the NFW halo, and how to quantify such difference. Two explicit modified gravity models are considered, Modified Newtonian Dynamics (MOND) and a more recent approach renormalization group effects in general relativity (RGGR). It is also the purpose of this work to significantly extend the sample on which RGGR has been tested in comparison to other approaches. By analysing 62 galaxies from five samples, we find that (i) there is a radius, given by half the disc scale length, below which RGGR and MOND can match the data about as well or better than NFW, albeit the formers have fewer free parameters; (ii) considering the complete rotation curve data, RGGR could achieve fits with better agreement than MOND, and almost as good as a NFW halo with two free parameters (NFW and RGGR have, respectively, two and one more free parameters than MOND)

    Renormalization Group approach to Gravity: the running of G and L inside galaxies and additional details on the elliptical NGC 4494

    Full text link
    We explore the phenomenology of nontrivial quantum effects on low-energy gravity. These effects come from the running of the gravitational coupling parameter G and the cosmological constant L in the Einstein-Hilbert action, as induced by the Renormalization Group (RG). The Renormalization Group corrected General Relativity (RGGR model) is used to parametrize these quantum effects, and it is assumed that the dominant dark matter-like effects inside galaxies is due to these nontrivial RG effects. Here we present additional details on the RGGR model application, in particular on the Poisson equation extension that defines the effective potential, also we re-analyse the ordinary elliptical galaxy NGC 4494 using a slightly different model for its baryonic contribution, and explicit solutions are presented for the running of G and L. The values of the NGC 4494 parameters as shown here have a better agreement with the general RGGR picture for galaxies, and suggest a larger radial anisotropy than the previously published result.Comment: 9 pages, 2 figs. Based on a talk presented at the VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Buzios, RJ, Brazil. v2: typos removed, matches published versio

    The Quantum Algebraic Structure of the Twisted XXZ Chain

    Full text link
    We consider the Quantum Inverse Scattering Method with a new R-matrix depending on two parameters qq and tt. We find that the underlying algebraic structure is the two-parameter deformed algebra SUq,t(2)SU_{q,t}(2) enlarged by introducing an element belonging to the centre. The corresponding Hamiltonian describes the spin-1/2 XXZ model with twisted periodic boundary conditions.Comment: LateX file, 9 pages, Minor changes (including authors` names in the hep-th heading

    Terrain Database Correlation Assessment Using an Open Source Tool

    Get PDF
    Configuring networked simulators for training military teams in a distributed environment requires the usage of a set of terrain databases to represent the same training area. The results of simulation exercises can be degraded if the terrain databases are poorly correlated. A number of methodologies for determining the correlation between terrain databaHowever, there are few computational tools for this task and most of them were developed to address government needs, have limited availability, and handle specific digital formats. The goal of this paper is thus to present a novel open source tool developed as part of an academic research project.Comment: 12 pages, I/ITSEC 201
    • 

    corecore