8,017 research outputs found

    How Does a Dipolar Bose-Einstein Condensate Collapse?

    Full text link
    We emphasize that the macroscopic collapse of a dipolar Bose-Einstein condensate in a pancake-shaped trap occurs through local density fluctuations, rather than through a global collapse to the trap center. This hypothesis is supported by a recent experiment in a chromium condensate.Comment: Proceedings of 17th International Laser Physics Worksho

    Vortices in attractive Bose-Einstein condensates in two dimensions

    Full text link
    The form and stability of quantum vortices in Bose-Einstein condensates with attractive atomic interactions is elucidated. They appear as ring bright solitons, and are a generalization of the Townes soliton to nonzero winding number mm. An infinite sequence of radially excited stationary states appear for each value of mm, which are characterized by concentric matter-wave rings separated by nodes, in contrast to repulsive condensates, where no such set of states exists. It is shown that robustly stable as well as unstable regimes may be achieved in confined geometries, thereby suggesting that vortices and their radial excited states can be observed in experiments on attractive condensates in two dimensions.Comment: 4 pages, 3 figure

    Radial rotating antenna-feed system

    Get PDF
    System incorporating two or more radial feed assemblies tracks and communicates with multiple moving transmitters, receivers, or transponders. System utilizes a fixed parabolic reflector or other beam-forming device such as a lens or spherical reflector

    Nonlinear Structure of the Diffusing Gas-Metal Interface in a Thermonuclear Plasma

    Get PDF
    This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp “front,” or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given.United States. Dept. of Energy (Contract DE-AC52-06NA25396)United States. Dept. of Energy. Office of Science (Contract DE-AC52-07NA27344

    Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting

    Get PDF
    Gait disability in people with progressive multiple sclerosis (MS) is difficult to quantify using existing clinical tools. This study aims to identify reliable and objective gait-based biomarkers to monitor progressive multiple sclerosis (MS) in clinical settings. During routine clinical visits, 57 people with secondary progressive MS and 24 healthy controls walked for 6 minutes wearing three inertial motion sensors. Fifteen gait measures were computed from the sensor data and tested for between-session reliability, for differences between controls and people with moderate and severe MS disability, and for correlation with Expanded Disability Status Scale (EDSS) scores. The majority of gait measures showed good to excellent between-session reliability when assessed in a subgroup of 23 healthy controls and 25 people with MS. These measures showed that people with MS walked with significantly longer step and stride durations, reduced step and stride regularity, and experienced difficulties in controlling and maintaining a stable walk when compared to controls. These abnormalities significantly increased in people with a higher level of disability and correlated with their EDSS scores. Reliable and objective gait-based biomarkers using wearable sensors have been identified. These biomarkers may allow clinicians to quantify clinically relevant alterations in gait in people with progressive MS within the context of regular clinical visits

    Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment

    Get PDF
    The presence of actinorhizas and arbuscular mycorrhizas may reduce plant stresses caused by adverse soil conditions. A greenhouse experiment was conducted using a sediment with a high pH, resulting from the disposal of waste originated at an acetylene and polyvinylchloride factory, in which Black alder (Alnus glutinosa) seedlings were inoculated either with Glomus intraradices BEG163 (originally isolated from the same sediment), Frankia spp. or both symbionts. After a 6-month growth period, plants inoculated with both symbionts had significantly greater leaf area, shoot height and total biomass when compared with the uninoculated control, the Frankia spp. and the G. intraradices treatments alone. In dual inoculated plants the N and P leaf content was significantly increased. A defoliation experiment was performed to evaluate the stress recovery of A. glutinosa and plants inoculated with both symbionts had a faster leaf regrowth and produced greater numbers of leaves. The dual inoculation resulted in greater numbers of and larger root nodules than when inoculated with Frankia spp. alone. The length and NADH diaphorase activity of the extraradical mycelium of G. intraradices was also significantly greater when dual inoculation was performed. The inoculation with Frankia spp. alone was shown to improve A. glutinosa growth, whereas G. intraradices alone had no positive effect under these environmental conditions. However, when the two symbionts were inoculated together a synergistic effect was observed resulting in a greater benefit for the plants and for both symbionts. The relevance of these findings for the phytorestoration of anthropogenic stressed sediments with high pH is discussed

    Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sediment

    Get PDF
    Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Re´my) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. DifferentAMFspecies did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERMlengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species
    corecore