7,059 research outputs found

    Development of a KSC test and flight engineering oriented computer language, Phase 1

    Get PDF
    Ten, primarily test oriented, computer languages reviewed during the phase 1 study effort are described. Fifty characteristics of ATOLL, ATLAS, and CLASP are compared. Unique characteristics of the other languages, including deficiencies, problems, safeguards, and checking provisions are identified. Programming aids related to these languages are reported, and the conclusions resulting from this phase of the study are discussed. A glossary and bibliography are included. For the reports on phase 2 of the study, see N71-35027 and N71-35029

    Coalescence in low-viscosity liquids

    Full text link
    The expected universal dynamics associated with the initial stage of droplet coalescence are difficult to study visually due to the rapid motion of the liquid and the awkward viewing geometry. Here we employ an electrical method to study the coalescence of two inviscid droplets at early times. We measure the growth dynamics of the bridge connecting the two droplets and observe a new asymptotic regime inconsistent with previous theoretical predictions. The measurements are consistent with a model in which the two liquids coalesce with a slightly deformed interface.Comment: 4 pages and 4 figure

    Low Energy Gamma-Ray Emission from Galactic Black Holes

    Get PDF
    X-ray observations of Galactic black holes (GBHs) such as Cygnus X-1 have greatly advanced the understanding of these objects. However, the vast majority of the observations have been restricted to energies below ~200 keV. The Compton Gamma-Ray Observatory (CGRO) allowed for the first time simultaneous observations at energies from ~25 keV up to >1 GeV. In particular, the BATSE experiment aboard CGRO was able to monitor low-energy gamma-ray emission from Cygnus X-1, as well as other GBHs, nearly continuously over a nine year period. Using the Enhanced BATSE Occultation Package (EBOP), light curves and spectra in the energy range 25–2000 keV have been obtained for six GBHs. Based on the spectra when the GBHs were in a high gamma-ray flux state, it is suggested that at least two different classes of GBHs exist. The first is characterized by a Comptonization spectrum below ~200 keV followed by a soft power law excess as exhibited by Cygnus X-1, GRO J0422+32, GRO J1719−24, and GX 339-4. The second class is characterized by simple power law spectrum in the full 25–2000 keV range, with no evidence for a Comptonization component, as exhibited by GRO J1655−40 and GRS 1915+105.Gamma-ray observations can serve as an important diagnostic in studying the physical processes around GBHs. More sensitive observations in the future at energies >250 keV will help answer questions regarding issues such as the nonthermal electron distribution, state transitions, and the connection to jets

    Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    Get PDF
    Long term all-sky monitoring of the 20 keV – 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM

    Earth Occultation Imaging of the Low Energy Gamma-Ray Sky with GBM

    Full text link
    The Earth Occultation Technique (EOT) has been applied to Fermi's Gamma-ray Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog of hard X-ray/soft gamma-ray sources. In order to search for sources not in the catalog, thus completing the catalog and reducing a source of systematic error in EOT, an imaging method has been developed -- Imaging with a Differential filter using the Earth Occultation Method (IDEOM). IDEOM is a tomographic imaging method that takes advantage of the orbital precession of the Fermi satellite. Using IDEOM, all-sky reconstructions have been generated for ~sim 4 years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in search of sources otherwise unmodeled by the GBM occultation analysis. IDEOM analysis resulted in the detection of 57 sources in the 12-50 keV energy band, 23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV energy band. Seventeen sources were not present in the original GBM-EOT catalog and have now been added. We also present the first joined averaged spectra for four persistent sources detected by GBM using EOT and by the Large Area Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab

    Space suit

    Get PDF
    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space

    GCR access to the Moon as measured by the CRaTER instrument on LRO

    Get PDF
    [1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth\u27s magnetosphere is able to shield energetic particles of \u3e10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions of Earth\u27s magnetotail. CRaTER data from multiple lunations demonstrate that Earth\u27s magnetosphere at lunar distances produces no measurable influence on energetic particle flux, even at the lowest energies (\u3e14 MeV protons) where any effect should be maximized. For particles with energies of 14–30 MeV, we calculate an upper limit (determined by counting statistics) on the amount of shielding caused by the magnetosphere of 1.7%. The high energy channel (\u3e500 MeV) provides an upper limit of 3.2%

    Bostonia: The Boston University Alumni Magazine. Volume 29

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    corecore