31 research outputs found

    Antimicrobial capacity of Aloe vera and propolis dentifrice against Streptococcus mutans strains in toothbrushes: an in vitro study

    Get PDF
    OBJECTIVES: This study evaluated in vitro the efficiency of Aloe vera and propolis dentifrice on reducing the contamination of toothbrush bristles by a standard strain of Streptococcus mutans (ATCC 25175; SM), after toothbrushing. MATERIAL AND METHODS: Fifteen sterile toothbrushes were randomly divided into 5 toothbrushing groups: I (negative control): without dentifrice; II: with fluoridated dentifrice; III: with triclosan and gantrez dentifrice; IV (positive control): without dentifrice and irrigation with 10 mL of 0.12% chlorhexidine gluconate; V: with Aloe vera and propolis dentifrice. In each group, 1 sterile bovine tooth was brushed for 1 min, where the toothbrush bristles were contaminated with 25 µL of SM. After toothbrushing, the bristles were stored in individual test tubes with 3 mL of BHI under anaerobiosis of 37ºC for 48 h. Then, they were seeded with sterile swab in triplicate in the Mitis salivarius - Bacitracin culture medium. The samples were kept under anaerobiosis of 37ºC for 48 h. Scores were used to count the number of colony forming units (cfu). The results were submitted to the Mann-Whitney statistical test at 5% significance level. RESULTS: There was statistically significant difference (p<0.05) for the reduction of bristle contamination comparing groups II, III, IV and V to group I. CONCLUSIONS: It may be stated that after toothbrushing, the Aloe vera and propolis dentifrice reduced the contamination of toothbrush bristles by SM, without differentiation from the other chemical agents used

    Frequency of oral mucositis and microbiological analysis in children with acute lymphoblastic leukemia treated with 0.12% chlorhexidine gluconate

    Get PDF
    Tendo em vista o potencial de morbidade das complicações orais em pacientes com leucemia, este estudo avaliou as alterações clínicas e microbiológicas que ocorrem na mucosa bucal de crianças com leucemia linfoblástica aguda (LLA), submetidas à quimioterapia antineoplásica e administração profilática do gluconato de clorexidina 0,12%. A amostra foi constituída de 17 crianças de 2 a 12 anos, as quais foram submetidas a exame clínico da mucosa oral para a detecção de lesões bucais. Além disso, foi coletado material biológico das mucosas labial e jugal para análises microbiológicas. A mucosite oral foi observada em apenas 5 (29,4%) pacientes. A análise microbiológica revelou a presença de um número reduzido de microorganismos potencialmente patogênicos, como estafilococos coagulase-negativos (47%), Candida albicans (35,3%), Klebsiella pneumoniae (5,9%), Escherichia coli enteropatogênica (5,9%) e Stenotrophomonas maltophilia (5,9%). Pacientes com mucosite oral apresentaram uma maior freqüência de estafilococos coagulase-negativos (80%) quando comparados aos pacientes que exibiam mucosa oral normal (33,3%). Em conclusão, os resultados do presente estudo sugerem que o uso profilático do gluconato de clorexidina 0,12% reduz a freqüência de mucosite oral e de patógenos orais em crianças com LLA. Além disso, os presentes achados sugerem uma possível relação entre estafilococos coagulase-negativos e o desenvolvimento de mucosite oral. _________________________________________________________________________________________ ABSTRACT: In view of the morbidity potential of oral complications in patients with leukemia, this study evaluated the clinical and microbiological alterations that occur in the oral mucosa of children with acute lymphoblastic leukemia (ALL) undergoing antineoplastic chemotherapy and prophylactic administration of 0.12% chlorhexidine gluconate. The sample consisted of 17 children aged 2 to 12 years that underwent clinical examination of the oral mucosa for the detection of oral lesions. In addition, biological material was collected from labial and buccal mucosa for microbiological analysis. Oral mucositis was observed in only 5 (29.4%) patients. Microbiological analysis revealed a reduced number of potentially pathogenic microorganisms, such as coagulase-negative staphylococci (47%), Candida albicans (35.3%), Klebsiella pneumoniae (5.9%), enteropathogenic Escherichia coli (5.9%), and Stenotrophomonas maltophilia (5.9%). Patients with oral mucositis showed a higher frequency of coagulase-negative staphylococci (80%) when compared with patients with normal oral mucosa (33.3%). In conclusion, the results of the present study suggest that the prophylactic use of 0.12% chlorhexidine gluconate reduces the frequency of oral mucositis and oral pathogens in children with ALL. In addition, the present findings suggest a possible relationship between coagulase-negative staphylococci and the development of oral mucositis

    In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses

    No full text
    International audienceThree bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibilit

    Study of nano bioactive glass for use as bone biomaterial comparison with micro bioactive glass behaviour

    No full text
    International audienceThis research is based on the study of bioactivity kinetic in function of the glass particles size. Bioactive glasses have been elaborated in the ternary system SiO2-CaO-P2O5. Nano bioactive glass and micro bioactive glass have been synthesized by using two different processes. They are destined for use as bone biomaterials. The comparison was focused on the kinetic of the development of a calcium phosphate layer on their surfaces after immersion in a Simulated Body Fluid (SBF). The first bioactive glass BG is a melting-made glass with a particles size of about 60 μm. The second bioactive glass NBG is a sol-gel made glass through an emulsion system of synthesized particles of about 110 nm. The growing of the calcium phosphate layer at the surface of the glasses has been followed using several physicochemical techniques. Obtained results show the development of a calcium phosphate layer similar to carbonated hydroxyapatite. It crystallises in a hexagonal system with an P63/m space group. While melting-made glass needs 14 days to develop carbonated hydroxyapatite like crystal, sol-gel needs only 3 days to develop similar crystals. This difference offers wide opportunities and complementarities for the use of nano or micro bioactive glasses in the biomedical field. © Published under licence by IOP Publishing Ltd
    corecore