414 research outputs found

    Fat Modulates the Relationship between Sarcopenia and Physical Function in Nonobese Older Adults

    Get PDF
    It is intuitive to think that sarcopenia should be associated with declines in physical function though recent evidence questions this assertion. This study investigated the relationship between absolute and relative sarcopenia, with physical performance in 202 nonobese (mean BMI = 26.6 kg/ht2) community-dwelling older (mean age = 73.8 ± 5.9 years) adults. While absolute sarcopenia (appendicular skeletal mass (ASM)/ht2) was either not associated, or weakly associated with physical performance, relative sarcopenia (ASM/kg) demonstrated moderate (r = 0.31 to r = 0.51, P < 0.01) relationships with performance outcomes in both males and females. Knee extension strength (r = 0.27) and leg extension power (r = 0.41) were both related to absolute sarcopenia (P < 0.001) in females and not in males. Strength and power were associated with relative sarcopenia in both sexes (from r = 0.47 to r = 0.67, P < 0.001). The ratio of lean mass to total body mass, that is, relative sarcopenia, is an important consideration relative to physical function in older adults even in the absence of obesity. Stratifying these individuals into equal tertiles of total body fat revealed a trend of diminished regression coefficients across each incrementally higher fat grouping for performance measures, providing further evidence that total body fat modulates the relationship between sarcopenia and physical function

    Non-Destructive Identification of Cold and Extremely Localized Single Molecular Ions

    Full text link
    A simple and non-destructive method for identification of a single molecular ion sympathetically cooled by a single laser cooled atomic ion in a linear Paul trap is demonstrated. The technique is based on a precise determination of the molecular ion mass through a measurement of the eigenfrequency of a common motional mode of the two ions. The demonstrated mass resolution is sufficiently high that a particular molecular ion species can be distinguished from other equally charged atomic or molecular ions having the same total number of nucleons

    Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    Full text link
    We show that pulse shaping techniques can be applied to tailor the ultrafast temporal response of the strongly confined and enhanced optical near fields in the feed gap of resonant optical antennas (ROAs). Using finite-difference time-domain (FDTD) simulations followed by Fourier transformation, we obtain the impulse response of a nano structure in the frequency domain, which allows obtaining its temporal response to any arbitrary pulse shape. We apply the method to achieve deterministic optimal temporal field compression in ROAs with reduced symmetry and in a two-wire transmission line connected to a symmetric dipole antenna. The method described here will be of importance for experiments involving coherent control of field propagation in nanophotonic structures and of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure

    IN3 COSTS ASSOCIATED WITH HCV AND RELATED COMPLICATIONS IN THE UNITED STATES FROM A MANAGED CARE PAYER'S PERSPECTIVE

    Get PDF

    Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    Get PDF
    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40 % of the number of trapped OH radicals.Comment: 7 pages, 4 figures (RevTeX) (v2) minor corrections (v3) no changes to manuscript, but fix author list in arXiv abstrac

    Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films

    Full text link
    By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre- pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320 C epitaxial growth is achieved. Depending on deposition parameters the films show metallic or semiconducting behavior. At high (low) deposition temperature the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples have a large negative magnetoresistance which peaks at the Curie temperature. The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in agreement with the expected value for an ideal ferrimagnetic arrangement. We found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K, corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair. In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike contribution dominates the Hall voltage, which vanishes at low temperatures for the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages, including 5 pictures and 1 Table, submitted to Phys. Rev.
    corecore