1,512 research outputs found

    High resolution CO images of Seyfert Galaxies

    Get PDF
    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity

    A Universal Neutral Gas Profile for Nearby Disk Galaxies

    Full text link
    Based on sensitive CO measurements from HERACLES and HI data from THINGS, we show that the azimuthally averaged radial distribution of the neutral gas surface density (Sigma_HI + Sigma_H2) in 33 nearby spiral galaxies exhibits a well-constrained universal exponential distribution beyond 0.2*r25 (inside of which the scatter is large) with less than a factor of two scatter out to two optical radii r25. Scaling the radius to r25 and the total gas surface density to the surface density at the transition radius, i.e., where Sigma_HI and Sigma_H2 are equal, as well as removing galaxies that are interacting with their environment, yields a tightly constrained exponential fit with average scale length 0.61+-0.06 r25. In this case, the scatter reduces to less than 40% across the optical disks (and remains below a factor of two at larger radii). We show that the tight exponential distribution of neutral gas implies that the total neutral gas mass of nearby disk galaxies depends primarily on the size of the stellar disk (influenced to some degree by the great variability of Sigma_H2 inside 0.2*r25). The derived prescription predicts the total gas mass in our sub-sample of 17 non-interacting disk galaxies to within a factor of two. Given the short timescale over which star formation depletes the H2 content of these galaxies and the large range of r25 in our sample, there appears to be some mechanism leading to these largely self-similar radial gas distributions in nearby disk galaxies.Comment: 7 pages, 4 figures, accepted for publication in the Astrophysical Journa

    Does CO trace H2 at high galactic latitude

    Get PDF
    A CO survey of 342 Infrared Excess Clouds (IRECs) distributed uniformly across the sky is presented. Following comparison of the integrated CO brightness with the 100 micron infrared brightness B(sub 4) obtained from the IRAS data, evidence was found for a threshold in B(sub 4) of 4-5 MJy sr(exp -1) below which CO does not form. Evidence is also presented that the threshold effect can be seen within an individual cloud, providing evidence for a phase transition between atomic and molecular gas. While the main thrust was to examine the CO content of the IRECs, it was also attempted to detect CO toward a number of UV stars so that CO brightness could be correlated with direct measurements of H2 column density and E(B-V). Of the 26 observed stars CO was detected toward 6. It is consistent with the results obtained using infrared data

    Tightly Correlated HI and FUV Emission in the Outskirts of M83

    Full text link
    We compare sensitive HI data from The HI Nearby Galaxy Survey (THINGS) and deep far UV (FUV) data from GALEX in the outer disk of M83. The FUV and HI maps show a stunning spatial correlation out to almost 4 optical radii (r25), roughly the extent of our maps. This underscores that HI traces the gas reservoir for outer disk star formation and it implies that massive (at least low level) star formation proceeds almost everywhere HI is observed. Whereas the average FUV intensity decreases steadily with increasing radius before leveling off at ~1.7 r25, the decline in HI surface density is more subtle. Low HI columns (<2 M_solar/pc^2) contribute most of the mass in the outer disk, which is not the case within r25. The time for star formation to consume the available HI, inferred from the ratio of HI to FUV intensity, rises with increasing radius before leveling off at ~100 Gyr, i.e., many Hubble times, near ~1.7 r25. Assuming the relatively short H2 depletion times observed in the inner parts of galaxies hold in outer disks, the conversion of HI into bound, molecular clouds seems to limit star formation in outer galaxy disks. The long consumption times suggest that most of the extended HI observed in M83 will not be consumed by in situ star formation. However, even these low star formation rates are enough to expect moderate chemical enrichment in a closed outer disk.Comment: Accepted for Publication in ApJ

    The Distances of SNR W41 and overlapping HII regions

    Full text link
    New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the 13^{13}CO emission spectra of eight small regions on the face of W41, including four HII regions, three non-thermal emission regions and one unclassified region. The maximum velocity of absorption for W41 is 78±\pm2 km/s and the CO cloud at radial velocity 95±\pm5 km/s is behind W41. Because an extended TeV source, a diffuse X-ray enhancement and a large molecular cloud at radial velocity 77±\pm5 km/s are also projected at the center of W41, these yield the kinematic distance of 3.9 to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21 and G23.07+0.25 are at the far kinematic distances (\sim9.9 kpc and \sim 10.6 kpc respectively) of their recombination-line velocities (103±\pm0.5 km/s and 89.6±\pm2.1 km/s respectively), G23.07-0.37 is at the near kinematic distance (4.4±\pm0.3 kpc) of its recombination-line velocity (82.7±\pm2.0 km/s), and G23.27-0.27 is probably at the near kinematic distance (4.1±\pm0.3 kpc) of its recombination-line velocity (76.1±\pm0.6 km/s).Comment: 11 pages, 3 figs., 2 tables, accepted by A

    Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure

    Get PDF
    Kinetics of CH₂OO Criegee intermediate reactions with SO₂, NO₂, NO, H₂O and CH₃CHO and CH₂I radical reactions with NO₂ are reported as a function of pressure at 295 K. Measurements were made under pseudo-first-order conditions using flash photolysis of CH₂I₂–O₂–N₂ gas mixtures in the presence of excess co-reagent combined with monitoring of HCHO reaction products by laser-induced fluorescence (LIF) spectroscopy and, for the reaction with SO₂, direct detection of CH₂OO by photoionisation mass spectrometry (PIMS). Rate coefficients for CH₂OO + SO₂ and CH₂OO + NO₂ are independent of pressure in the ranges studied and are (3.42 ± 0.42) × 10‾¹¹ cm³ s‾¹ (measured between 1.5 and 450 Torr) and (1.5 ± 0.5) × 10‾¹² cm³ s‾¹ (measured between 25 and 300 Torr), respectively. The rate coefficient for CH₂OO + CH₃CHO is pressure dependent, with the yield of HCHO decreasing with increasing pressure. Upper limits of 2 × 10−13 cm³ s‾¹ and 9 × 10−17 cm³ s‾¹ are placed on the rate coefficients for CH₂OO + NO and CH₂OO + H₂O, respectively. The upper limit for the rate coefficient for CH₂OO + H₂O is significantly lower than has been reported previously, with consequences for modelling of atmospheric impacts of CH₂OO chemistry

    High-resolution Velocity Fields of Low-mass Disk Galaxies. I. CO Observations

    Get PDF
    This paper is the first in a series whose aim is to examine the relative distributions of dark and baryonic matter as a function of star formation history in a representative sample of low-mass disk galaxies. In this paper, we present high-resolution 12 CO(j=1→0) interferometry for a sample of 26 nearby dwarf galaxies that were obtained from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Among these 26 galaxies, 14 have good CO detections, including 6 galaxies previously detected in single-dish CO measurements and 8 newly detected ones. We find a linear correlation between the CO flux and the mid- and far-IR flux from the WISE and IRAS catalogs. Compared to the far-IR flux, the mid-IR flux may be a better indication of whether a galaxy contains sufficient CO for detection at the level of instrument sensitivity of CARMA. This correlation might prove to be useful in future studies to help choosing other CO targets for observation. The median molecular mass (including helium) of our galaxies is 2.8×10 8 M⊙, which is consistent with past observations for dwarf galaxies. The molecular content is weakly correlated with the dynamical mass, r-band luminosity and size of the galaxies. The median ratios of molecular mass versus dynamical mass and molecular mass versus r-band luminosity are M mol M dyn ≈ 0.035 and M mol L r ≈ 0.078M⊙ L r , ⊙, respectively, which are also consistent with past observations for dwarf galaxies

    An instrument to measure fast gas phase radical kinetics at hight temperatures and pressures

    Get PDF
    Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument is reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25,000 s-1) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ~ 900 K and ~ 5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry
    corecore