232 research outputs found
First measurements of 15N fractionation in N2H+ toward high-mass star forming cores
We report on the first measurements of the isotopic ratio 14N/15N in N2H+
toward a statistically significant sample of high-mass star forming cores. The
sources belong to the three main evolutionary categories of the high-mass star
formation process: high-mass starless cores, high-mass protostellar objects,
and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have
been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180
up to ~1300), while those derived from CN are in between the value measured in
the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for
the large majority of the sources within the errors. However, this different
spread might be due to the fact that the sources detected in the N2H+
isotopologues are more than those detected in the CN ones. The 14N/15N ratio
does not change significantly with the source evolutionary stage, which
indicates that time seems to be irrelevant for the fractionation of nitrogen.
We also find a possible anticorrelation between the 14N/15N (as derived from
N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not
be linked to the parameters that cause D enrichment, in agreement with the
prediction by recent chemical models. These models, however, are not able to
reproduce the observed large spread in 14N/15N, pointing out that some
important routes of nitrogen fractionation could be still missing in the
models.Comment: 2 Figures, accepted for publication in ApJ
The observed chemical structure of L1544
Prior to star formation, pre-stellar cores accumulate matter towards the
centre. As a consequence, their central density increases while the temperature
decreases. Understanding the evolution of the chemistry and physics in this
early phase is crucial to study the processes governing the formation of a
star. We aim at studying the chemical differentiation of a prototypical
pre-stellar core, L1544, by detailed molecular maps. In contrast with single
pointing observations, we performed a deep study on the dependencies of
chemistry on physical and external conditions. We present the emission maps of
39 different molecular transitions belonging to 22 different molecules in the
central 6.25 arcmin of L1544. We classified our sample in five families,
depending on the location of their emission peaks within the core. Furthermore,
to systematically study the correlations among different molecules, we have
performed the principal component analysis (PCA) on the integrated emission
maps. The PCA allows us to reduce the amount of variables in our dataset.
Finally, we compare the maps of the first three principal components with the
H column density map, and the T map of the core. The results of
our qualitative analysis is the classification of the molecules in our dataset
in the following groups: (i) the -CH family (carbon chain
molecules), (ii) the dust peak family (nitrogen-bearing species), (iii) the
methanol peak family (oxygen-bearing molecules), (iv) the HNCO peak family
(HNCO, propyne and its deuterated isotopologues). Only HCO and
CS do not belong to any of the above mentioned groups. The principal
component maps allow us to confirm the (anti-)correlations among different
families that were described in a first qualitative analysis, but also points
out the correlation that could not be inferred before.Comment: 29 pages, 19 figures, 2 appendices, accepted for publication in A&A,
arXiv abstract has been slightly modifie
Editorial: Exploring the Chemical Universe
Editorial on the Research Topi
O2 signature in thin and thick O2-H2O ices
Aims. In this paper we investigate the detectability of the molecular oxygen
in icy dust grain mantles towards astronomical objects. Methods. We present a
systematic set of experiments with O2-H2O ice mixtures designed to disentangle
how the molecular ratio affects the O2 signature in the mid- and near-infrared
spectral regions. All the experiments were conducted in a closed-cycle helium
cryostat coupled to a Fourier transform infrared spectrometer. The ice mixtures
comprise varying thicknesses from 8 10 to 3 m. The
absorption spectra of the O2-H2O mixtures are also compared to the one of pure
water. In addition, the possibility to detect the O2 in icy bodies and in the
interstellar medium is discussed. Results. We are able to see the O2 feature at
1551 cm even for the most diluted mixture of H2O : O2 = 9 : 1,
comparable to a ratio of O2/H2O = 10 % which has already been detected in situ
in the coma of the comet 67P/Churyumov-Gerasimenko. We provide an estimate for
the detection of O2 with the future mission of the James Webb Space Telescope
(JWST).Comment: 11 pages, 10 figures, article in press, to appear in A&A 201
First sample of nitrogen isotopic ratio measurements in low-mass protostars
Context. The nitrogen isotopic ratio is considered an important diagnostic
tool of the star formation process, and is particularly important
because it is directly linked to molecular nitrogen . However, theoretical
models still lack to provide an exhaustive explanation for the observed
values.
Aims. Recent theoretical works suggest that the behaviour is
dominated by two competing reactions that destroy : dissociative
recombination and reaction with CO. When CO is depleted from the gas phase, if
recombination rate is lower with respect to the one, the
rarer isotopologue is destroyed faster. This implies that the isotopic
ratio in protostars should be lower than the one in prestellar cores, and
consistent with the elemental value of ~440. We aim to test this hypothesis,
producing the first sample of measurements in low mass
protostars.
Methods. We observe the and lowest rotational
transition towards six young stellar objects in Perseus and Taurus molecular
clouds. We model the spectra with a custom python code using a constant
approach to fit the observations. We discuss in appendix the validity
of this hypothesis. The derived column densities are used to compute the
nitrogen isotopic ratio.
Results. Our analysis yields an average of in the protostellar sample. This is consistent with the protosolar
value of 440, and significantly lower than the average value previously
obtained in a sample of prestellar objects. Conclusions. Our results are in
agreement with the hypothesis that, when CO is depleted from the gas-phase,
dissociative recombinations with free electrons destroy faster
than , leading to high isotopic ratios in prestellar cores, where CO is
frozen on dust grains.Comment: Accepted on A&A on 09 Oct 202
Kinematics of dense gas in the L1495 filament
We study the kinematics of the dense gas of starless and protostellar cores
traced by the N2D+(2-1), N2H+(1-0), DCO+(2-1), and H13CO+(1-0) transitions
along the L1495 filament and the kinematic links between the cores and the
surrounding molecular cloud.
We measure velocity dispersions, local and total velocity gradients and
estimate the specific angular momenta of 13 dense cores in the four transitions
using the on-the-fly observations with the IRAM 30 m antenna. To study a
possible connection to the filament gas, we use the fit results of the
C18O(1-0) survey performed by Hacar et al. (2013).
All cores show similar properties along the 10 pc-long filament. N2D+(2-1)
shows the most centrally concentrated structure, followed by N2H+(1-0) and
DCO+(2-1), which show similar spatial extent, and H13CO+(1-0). The non-thermal
contribution to the velocity dispersion increases from higher to lower density
tracers. The change of magnitude and direction of the total velocity gradients
depending on the tracer used indicates that internal motions change at
different depths within the cloud. N2D+ and N2H+ show smaller gradients than
the lower density tracers DCO+ and H13CO+, implying a loss of specific angular
momentum at small scales. At the level of cloud-core transition, the core's
external envelope traced by DCO+ and H13CO+ is spinning up, consistent with
conservation of angular momentum during core contraction. C18O traces the more
extended cloud material whose kinematics is not affected by the presence of
dense cores. The decrease in specific angular momentum towards the centres of
the cores shows the importance of local magnetic fields to the small scale
dynamics of the cores. The random distributions of angles between the total
velocity gradient and large scale magnetic field suggests that the magnetic
fields may become important only in the high density gas within dense cores.Comment: Accepted for publication in A&A. The abstract is shortene
The chemical structure of the very young starless core L1521E
L1521E is a dense starless core in Taurus that was found to have relatively
low molecular depletion by earlier studies, thus suggesting a recent formation.
We aim to characterize the chemical structure of L1521E and compare it to the
more evolved L1544 pre-stellar core. We have obtained 2.52.5
arcminute maps toward L1521E using the IRAM-30m telescope in transitions of
various species. We derived abundances for the species and compared them to
those obtained toward L1544. We estimated CO depletion factors. Similarly to
L1544, -CH and CHOH peak at different positions. Most species
peak toward the -CH peak. The CO depletion factor derived toward the
dust peak is 4.31.6, which is about a factor of three lower
than that toward L1544. The abundances of sulfur-bearing molecules are higher
toward L1521E than toward L1544 by factors of 2-20. The abundance of
methanol is similar toward the two cores. The higher abundances of
sulfur-bearing species toward L1521E than toward L1544 suggest that significant
sulfur depletion takes place during the dynamical evolution of dense cores,
from the starless to pre-stellar stage. The CO depletion factor measured toward
L1521E suggests that CO is more depleted than previously found. Similar
CHOH abundances between L1521E and L1544 hint that methanol is forming at
specific physical conditions in Taurus, characterized by densities of a few
10 cm and (H)10 cm, when CO
starts to catastrophically freeze-out, while water can still be significantly
photodissociated, so that the surfaces of dust grains become rich in solid CO
and CHOH, as already found toward L1544. Methanol can thus provide
selective crucial information about the transition region between dense cores
and the surrounding parent cloud.Comment: Accepted for publication in A&A, abstract abridge
A study of the -/- ratio in low-mass star forming regions
We use the deuteration of - to probe the physical
parameters of starless and protostellar cores, related to their evolutionary
states, and compare it to the -deuteration in order to
study possible differences between the deuteration of C- and N-bearing species.
We observed the main species -, the singly and doubly
deuterated species - and -, as
well as the isotopologue - toward 10 starless
cores and 5 protostars in the Taurus and Perseus Complexes. We examined the
correlation between the
(-)/(-) ratio and the dust
temperature along with the column density and the CO depletion
factor. The resulting
(-)/(-) ratio is within the
error bars consistent with in all starless cores with detected
-. This also accounts for the protostars except for the
source HH211, where we measure a high deuteration level of . The
deuteration of follows the same trend but is considerably
higher in the dynamically evolved core L1544. Toward the protostellar cores the
coolest objects show the largest deuterium fraction in
-. We show that the deuteration of
- can trace the early phases of star formation and is
comparable to that of . However, the largest
- deuteration level is found toward protostellar cores,
suggesting that while - is mainly frozen onto dust
grains in the central regions of starless cores, active deuteration is taking
place on ice
Rotational spectroscopy of the HCCO and DCCO radicals in the millimeter and submillimeter range
The ketenyl radical, HCCO, has recently been detected in the ISM for the
first time. Further astronomical detections of HCCO will help us understand its
gas-grain chemistry, and subsequently revise the oxygen-bearing chemistry
towards dark clouds. Moreover, its deuterated counterpart, DCCO, has never been
observed in the ISM. HCCO and DCCO still lack a broad spectroscopic
investigation, although they exhibit a significant astrophysical relevance. In
this work we aim to measure the pure rotational spectra of the ground state of
HCCO and DCCO in the millimeter and submillimeter region, considerably
extending the frequency range covered by previous studies. The spectral
acquisition was performed using a frequency-modulation absorption spectrometer
between 170 and 650 GHz. The radicals were produced in a low-density plasma
generated from a select mixture of gaseous precursors. For each isotopologue we
were able to detect and assign more than 100 rotational lines. The new lines
have significantly enhanced the previous data set allowing the determination of
highly precise rotational and centrifugal distortion parameters. In our
analysis we have taken into account the interaction between the ground
electronic state and a low-lying excited state (Renner-Teller pair) which
enables the prediction and assignment of rotational transitions with up
to 4. The present set of spectroscopic parameters provides highly accurate,
millimeter and submillimeter rest-frequencies of HCCO and DCCO for future
astronomical observations. We also show that towards the pre-stellar core
L1544, ketenyl peaks in the region where - peaks,
suggesting that HCCO follows a predominant hydrocarbon chemistry, as already
proposed by recent gas-grain chemical models
Nitrogen fractionation towards a pre-stellar core traces isotope-selective photodissociation
Context. Isotopologue abundance ratios are important to understand the evolution of astrophysical objects and ultimately the origins of a planetary system such as our own. With nitrogen being a fundamental ingredient of pre-biotic material, understanding its chemistry and inheritance is of fundamental importance to understand the formation of the building blocks of life.
Aims. We aim to study the 14N/15N ratio in HCN, HNC, and CN across the prototypical pre-stellar core L1544. This study allows us to test the proposed fractionation mechanisms for nitrogen.
Methods. We present here single-dish observations of the ground state rotational transitions of the 13C and 15N isotopologues of HCN, HNC, and CN with the IRAM 30 m telescope. We analyse their column densities and compute the 14N/15N ratio map across the core for HCN. The 15N fractionation of CN and HNC is computed towards different offsets across L1544.
Results. The 15 N-fractionation map of HCN towards a pre-stellar core is presented here for the first time. Our map shows a very clear decrease in the 14N/15N ratio towards the southern edge of L1544, where carbon chain molecules present a peak, strongly suggesting that isotope-selective photodissociation has a strong effect on the fractionation of nitrogen across pre-stellar cores. The 14N/15N ratio in CN measured towards four positions across the core also shows a decrease towards the south-east of the core, while HNC shows the opposite behaviour. We also measured the 12CN/13CN ratio towards four positions across the core.
Conclusions. The uneven illumination of the pre-stellar core L1544 provides clear evidence that 15 N fractionation of HCN and CN is enhanced towards the region more exposed to the interstellar radiation field. Isotope-selective photodissociation of N2 is then a crucial process to understand 15N fractionation, as already found in protoplanetary disks. Therefore, the 15N fractionation in prestellar material is expected to change depending on the environment within which pre-stellar cores are embedded. The 12CN/13CN ratio also varies across the core, but its variation does not affect our conclusions as to the effect of the environment on the fractionation of nitrogen. Nevertheless, the interplay between the carbon and nitrogen fractionation across the core warrants follow-up studies
- …