429 research outputs found

    Hot methane line lists for exoplanet and brown dwarf atmospheres

    Get PDF
    We present comprehensive experimental line lists of methane (CH4) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300 - 1400 degC at twelve 100 degC intervals spanning the 960 - 5000 cm-1 (2.0 - 10.4 microns) region of the infrared. This range encompasses the dyad, pentad and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH4 spectra, we have estimated empirical lower state energies (Elow in cm-1) and our values have been incorporated into the line lists along with line positions (cm-1) and calibrated line intensities (S' in cm molecule-1). We expect our hot CH4 line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.Comment: Supplementary material is provided via the Astrophysical Journal referenc

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Simulation of Energetic Particle Precipitation Effects During the 2003-2004 Arctic Winter

    Get PDF
    Energetic particle precipitation (EPP) during the 2003-2004 Arctic winter led to the production and subsequent transport of reactive odd nitrogen (NOx=NO+NO2) from the mesosphere and lower thermosphere (MLT) into the stratosphere. This caused NOx enhancements in the polar upper stratosphere in April 2004 that were unprecedented in the satellite record. Simulations of the 2003-2004 Arctic winter with the Whole Atmosphere Community Climate Model using Specified Dynamics (SD-WACCM) are compared to satellite measurements to assess our understanding of the observed NOx enhancements. The comparisons show that SD-WACCM clearly displays the descent of NOx produced by EPP but underestimates the enhancements by at least a factor of four. Comparisons with NO measurements in January and February indicate that SD-WACCM most likely underestimates EPP-induced NO production locally in the mesosphere because it does not include precipitation of high energy electrons. Comparisons with temperature measurements suggest that SD-WACCM does not properly simulate recovery from a sudden stratospheric warming in early January, resulting in insufficient transport from the MLT into the stratosphere. Both of these factors probably contribute to the inability of SD-WACCM to simulate the stratospheric NOx enhancements, although their relative importance is unclear. The work highlights the importance of considering the full spectrum of precipitating electrons in order to fully understand the impact of EPP on the atmosphere. It also suggests a need for high-quality meteorological data and measurements of NOx throughout the polar winter MLT. ©2015. American Geophysical Union

    Validation of the Global Distribution of CO\u3csub\u3e2\u3c/sub\u3e Volume Mixing Ratio in the Mesosphere and Lower Thermosphere from SABER

    Get PDF
    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has been measuring the limb radiance in 10 broadband infrared channels over the altitude range from ~ 400 km to the Earth\u27s surface since 2002. The kinetic temperatures and CO2 volume mixing ratios (VMRs) in the mesosphere and lower thermosphere have been simultaneously retrieved using SABER limb radiances at 15 and 4.3 μm under nonlocal thermodynamic equilibrium (non-LTE) conditions. This paper presents results of a validation study of the SABER CO2 VMRs obtained with a two-channel, self-consistent temperature/CO2 retrieval algorithm. Results are based on comparisons with coincident CO2 measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and simulations using the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). The SABER CO2 VMRs are in agreement with ACE-FTS observations within reported systematic uncertainties from 65 to 110 km. The annual average SABER CO2 VMR falls off from a well-mixed value above ~80 km. Latitudinal and seasonal variations of CO2 VMRs are substantial. SABER observations and the SD-WACCM simulations are in overall agreement for CO2 seasonal variations, as well as global distributions in the mesosphere and lower thermosphere. Not surprisingly, the CO2 seasonal variation is shown to be driven by the general circulation, converging in the summer polar mesopause region and diverging in the winter polar mesopause region. Key Points Mean SABER CO2 distribution is validated against SD-WACCM and ACE-FTS data SABER and ACE-FTS mean CO2 VMR agree within 5% below 90 km up to 20% at 110 km SD-WACCM and SABER CO2 spatial and seasonal distribution show a good agreement. © 2015. American Geophysical Union
    corecore