
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Chemistry & Biochemistry Faculty Publications Chemistry & Biochemistry 

12-2015 

Validation of the Global Distribution of COValidation of the Global Distribution of CO22  Volume Mixing Ratio Volume Mixing Ratio 

in the Mesosphere and Lower Thermosphere from SABER in the Mesosphere and Lower Thermosphere from SABER 

L. Rezac 

Y. Jian 

J. Yue 

J. M. Russell III 

A. Kutepov 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/chemistry_fac_pubs 

 Part of the Atmospheric Sciences Commons, Climate Commons, Geophysics and Seismology 

Commons, and the Physical Chemistry Commons 

Original Publication Citation Original Publication Citation 
Rezac, L., Jian, Y., Yue, J., Russell, J. M., III, Kutepov, A., Garcia, R., . . . Bernath, P. (2015). Validation of the 
global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. 

Journal of Geophysical Research: Atmospheres, 120(23), 12,067-12,081. doi:10.1002/2015JD023955 

This Article is brought to you for free and open access by the Chemistry & Biochemistry at ODU Digital Commons. It 
has been accepted for inclusion in Chemistry & Biochemistry Faculty Publications by an authorized administrator of 
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217288168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/chemistry_fac_pubs
https://digitalcommons.odu.edu/chemistry
https://digitalcommons.odu.edu/chemistry_fac_pubs?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=digitalcommons.odu.edu%2Fchemistry_fac_pubs%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Authors Authors 
L. Rezac, Y. Jian, J. Yue, J. M. Russell III, A. Kutepov, R. Garcia, K. Walker, and P. Bernath 

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/chemistry_fac_pubs/66 

https://digitalcommons.odu.edu/chemistry_fac_pubs/66


Validation of the global distribution of CO2 volume
mixing ratio in the mesosphere and lower
thermosphere from SABER
L. Rezac1,2, Y. Jian2, J. Yue2, J. M. Russell III2, A. Kutepov3,4, R. Garcia5, K. Walker6, and P. Bernath7

1Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, 2Center for Atmospheric Sciences, Hampton
University, Hampton, Virginia, USA, 3NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 4Physics Department,
The Catholic University of America, Washington, District of Columbia, USA, 5Atmospheric Chemistry Division, National
Center for Atmospheric Research, Boulder, Colorado, USA, 6Department of Physics, University of Toronto, Toronto, Ontario,
Canada, 7Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, USA

Abstract The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on
board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has been measuring the
limb radiance in 10 broadband infrared channels over the altitude range from ~ 400 km to the Earth’s surface
since 2002. The kinetic temperatures and CO2 volume mixing ratios (VMRs) in the mesosphere and lower
thermosphere have been simultaneously retrieved using SABER limb radiances at 15 and 4.3μm under
nonlocal thermodynamic equilibrium (non-LTE) conditions. This paper presents results of a validation study
of the SABER CO2 VMRs obtained with a two-channel, self-consistent temperature/CO2 retrieval algorithm.
Results are based on comparisons with coincident CO2 measurements made by the Atmospheric Chemistry
Experiment Fourier transform spectrometer (ACE-FTS) and simulations using the Specified Dynamics
version of the Whole Atmosphere Community Climate Model (SD-WACCM). The SABER CO2 VMRs are in
agreement with ACE-FTS observations within reported systematic uncertainties from 65 to 110 km. The
annual average SABER CO2 VMR falls off from a well-mixed value above ~80 km. Latitudinal and seasonal
variations of CO2 VMRs are substantial. SABER observations and the SD-WACCM simulations are in overall
agreement for CO2 seasonal variations, as well as global distributions in the mesosphere and lower
thermosphere. Not surprisingly, the CO2 seasonal variation is shown to be driven by the general circulation,
converging in the summer polar mesopause region and diverging in the winter polar mesopause region.

1. Introduction

Carbondioxide (CO2) is an important greenhouse gas in Earth’s atmosphere because it is transparent to incoming
visible solar light but absorbs outgoing infrared radiation. Observations show that the tropospheric CO2

concentration has been increasing at a rate of 1–2 parts per million by volume (ppmv) per year since 1960
[Tans and Keeling, 2014], which is mostly attributed to fossil fuel burning and deforestation. There is a time
lag of about 5 years for changes in tropospheric air to reach the middle and upper atmosphere through trans-
port [Bischof et al., 1985], where the continual rise of the CO2 concentration is expected to significantly influence
the thermal structure [Roble and Dickinson, 1989; Akmaev, 2002; Garcia et al., 2007]. Due to rising CO2 levels, the
upper atmosphere, unlike the lower atmosphere, is predicted to experience strong cooling and contraction,
which may have significant consequences for low Earth orbit spacecraft [e.g., Lewis et al., 2011; Emmert et al.,
2012]. CO2 also plays an important role as a tracer of turbulentmixing that defines the height of the turbopause
[Garcia et al., 2014]. In addition, knowledge of vertical profiles of CO2 volume mixing ratio (VMR) in the upper
atmosphere is required for interpretation of satellite observations of infrared radiation of CO2 bands used to
retrieve kinetic temperature and other chemical constituents [Lopez-Puertas et al., 2000; Remsberg et al., 2008].

The first direct measurements of CO2 in the mesosphere and lower thermosphere (MLT) were provided by
rocket-borne mass spectrometers [Offermann and Grossmann, 1973; Philibrick et al., 1973; Trinks and Fricke,
1978; Offermann et al., 1981]. These data show a nearly constant CO2 VMR up to ~90–100 km altitude.
However, rocket measurements only take place in limited regions and special times. Global monitoring of
CO2 concentration can only be carried out by spaceborne instruments measuring either atmospheric
emission or absorption of CO2 bands [Lopez-Puertas et al., 2000]. The advantage of the satellite solar occulta-
tion remote sensing technique is that absorption is a much more direct measurement of the CO2 ground-state
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density, which is only weakly affected by nonlocal thermodynamic equilibrium (non-LTE) effects. However, only
~30 solar occultation profiles per day are collected from sunset and sunrise measurements for an instrument in
a typical low Earth orbit. Occultationmeasurements of CO2 density in themesosphere and lower thermosphere
(MLT) have been made by several spaceborne experiments including the Grille spectrometer on board
Spacelab 1 [Girard et al., 1988], the Atmospheric Trace Molecule Spectroscopy interferometer on Spacelab 3
[Rinsland et al., 1992], and during the Atmospheric Laboratory for Applications and Science 1, 2, and 3 missions
[Kale and Miller, 1996]. These measurements showed CO2 to be well mixed up to 90 km altitude. A recent solar
occultation experiment, the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) on
board SCISAT [Bernath et al., 2005], showed latitudinal variability of the departure of CO2 VMR from the
well-mixed value, which on average occurred at a lower altitude (~80 km) than previously found
[Beagley et al., 2010].

The CO2 limb emissions can also be used to retrieve CO2 VMRs but with a broader daily global coverage than
the occultation measurements. However, the retrieval algorithm is more complicated due to non-LTE effects
in the molecular energy levels from which the emissions originate [Lopez-Puertas et al., 2000]. Emissions from
the CO2(ν3) band at 4.3μm or the CO2(ν2) band at 15μm were obtained from rocket-borne spectrometer
measurements made during the Spectral Infrared Rocket Experiment [Wintersteiner et al., 1992; Nebel et al.,
1994] and the Spectroscopic Infrared Structure Signatures Investigation [Vollmann and Grossmann, 1997]
and from satellite measurements made by the Stratospheric and Mesospheric Sounder on Nimbus 7
[Lopez-Puertas and Taylor, 1989], and its successor, the Improved Stratospheric and Mesospheric Sounder
on the Upper Atmosphere Research Satellite [Lopez-Puertas et al., 1998; Zaragoza et al., 2000]. These measure-
ments covered altitude ranges between 60 and 120 km. The Cryogenic Infrared Spectrometers and
Telescopes for the Atmosphere (CRISTA) experiment, on board the Space Shuttle mission in November
1994 and August 1997, also provided global CO2 measurements in the altitude range 60–130 km
[Offermann et al., 1999; Kaufmann et al., 2002]. These measurements, (CRISTA), sampled a latitude range of
60°N–60°S with a mean CO2 VMR profile departing from a well-mixed value at ~70 km. Summaries of past
CO2 observations are provided in a review paper by Lopez-Puertas et al. [2000] and also in Kaufmann et al.
[2002] and Beagley et al. [2010].

The main processes controlling the annual mean vertical distribution of the CO2 VMR below about 10�4 hPa
(~105–110 km) are eddy diffusion and molecular diffusive separation; above that altitude, photolytic and
other loss mechanisms of CO2, as well as molecular diffusion, become increasingly important [Garcia et al.,
2014]. The interplay of eddy diffusion and molecular diffusive separation strongly influences the altitude
where the CO2 VMR departs from the well-mixed value. Photolysis is found to play a minor role in governing
the CO2 VMR below 110 km. Garcia et al. [2014] provide an updated review of these processes and show the
calculated CO2 and CO height distributions using the Specified Dynamics version of the Whole Atmosphere
Community Climate Model (SD-WACCM) constrained by Modern-Era Retrospective Analysis for Research and
Applications (MERRA) data below about 1 hPa (50 km).

In this paper we report on the validation of global CO2 VMR data obtained from a self-consistent two-channel
inversion of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) v2.0 4.3μm and
15μm radiances. The two-channel retrieval algorithm is described in detail in Rezac et al. [2015]. The retrievals
are performed on postprocessed radiances, meaning radiances for which pressure and altitude registration,
spacecraft motion effects, and other radiance correction factors that must be done before retrievals started
have already been implemented by the SABER operational processing code. This paper is structured in the
following way: the SABER and ACE-FTS instruments and the coincident observations are described in
section 2. A summary of the SABER two-channel retrieval algorithm and its associated uncertainties are
discussed in section 3. In section 4, the coincident SABER and ACE-FTS CO2 VMR profiles are compared, along
with the comparisons of the SABER CO2 VMR altitude, latitude, and seasonal distributions with the SD-WACCM
simulations. In section 5, a summary of the main results and conclusions are presented.

2. The SABER and ACE-FTS CO2 Observations

The SABER instrument on Thermosphere Ionosphere Mesosphere Energetics and Dynamics was launched on
7 December 2001, and it has become one of the longest (13 years since 2002) operating infrared sensors,
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providing about 1400 profiles a day with nearly global coverage. The SABER limb scans provide simultaneous
radiance profiles in 10 spectral channels over the range 1.27–17μm. The SABER channels include CO2

emission bands at both 4.3μm and 15μm, with a field of view of 2 km that is oversampled with vertical steps
of 0.375 km. The horizontal resolution is dictated by the limb geometry and is ~300 km. The latitude coverage
is 82°N–53°S or 53°N–82°S, with alternating coverage due to the spacecraft 60 day yaw cycle. A detailed
description of the SABER instrument and data retrieval, in particular the operational temperature results,
can be found in Russell et al. [1999] and Remsberg et al. [2008], respectively.

The ACE-FTS mounted on the SCISAT platform was launched into a 74° inclination circular orbit at an altitude
of 650 km on 12 August 2003. The ACE-FTS is a high spectral resolution (0.02 cm�1) Fourier transform spectro-
meter operating in the 750–4400 cm�1 (2.2–13.3μm) range. Using solar occultation, the ACE-FTS measures
limb infrared absorption spectra, which are then translated into transmittances using exo-atmospheric
observations. Each day, it is possible to obtain a maximum of about 15 sunrise profiles and 15 sunset profiles.
Thus, there are a total of ~30 vertical occultation scans per day [Bernath et al., 2005]. For this work, version 3.0
ACE-FTS retrievals are used [Boone et al., 2013]. Vertical profiles of temperature and CO2 densities are obtained
in the MLT from a total of 67 microwindows in the spectral ranges of 4.82–5.26 μm and 4.18–4.36 μm
[Beagley et al., 2010]. Because of the relationship between Tk and CO2 number density, the simultaneous
retrieval is a strongly ill-posed problem; and in the absence of additional constraints, the inversion may
yield unphysical oscillations in the vertical profiles. Therefore, the ACE-FTS CO2 VMR profile is parameterized
in the 60–120 km altitude range, and only the appropriate coefficients are retrieved through least squares
fitting. The estimated vertical resolution is between 2 and 6 km depending on the beta angle of the orbit
(i.e., the angle between the orbital plane and the satellite-Sun vector).

3. SABER Self-Consistent Tk/CO2 Two-Channel Retrieval Algorithm

The v2.0 SABER measured limb radiances at 4.3μm and 15μm are used to simultaneously obtain vertical
profiles of kinetic temperature, Tk, and CO2 VMR. In the current stage, the two-channel algorithm is applied only
for SABER daytime observations for solar zenith angles <80° (this is done to achieve better signal-to-noise ratio).
We are currently revisiting the nighttime 4.3μm forwardmodel in order to apply the samemethodology to obtain
Tk/CO2 at night in the near future. Additional screening based on the Kp index < 4 is applied in order to sample
only geomagnetically quiet conditions (to avoid the possibility of significant NO+ emission into the SABER 4.3μm
channel). In the MLT the SABER measured limb emissions are significantly influenced by non-LTE conditions. The
fundamental band at 15μm starts deviating from LTE near 80 km, and sometimes even lower, depending on
the actual temperature profile [Garcia-Comas et al., 2008], while the 4.3μm levels are already in non-LTE as
low as 50–55 km altitude during daytime. The mechanisms involved in the non-LTE populations of the CO2

vibrational levels are summarized in more detail by Lopez-Puertas and Taylor [2001]. As already noted, the
two-channel inversion is applied to postoperationally processed data in which the CO2 vibrational popula-
tions along with the forward modeling of non-LTE limb radiances are calculated with the accelerated lambda
iteration for atmospheric radiation and molecular spectra package [Kutepov et al., 1998; Gusev and Kutepov,
2003; Rezac et al., 2015] based on the Accelerated Lambda Iteration approach [Rybicki and Hummer, 1991].

The two-channel self-consistent Tk/CO2 inversion is achieved by iterating over two independent relaxation
modules, one for Tk and one for the CO2 VMR. The current approach is selected from several inversion tech-
niques mainly for its speed, stability, and flexibility, and it builds upon a similar approach used in the v1.06
SABER data inversion [Mertens et al., 2003]. The algorithm uses modified Chahine profile update functions
[Chahine, 1972; Twomey et al., 1977] for both Tk and CO2 VMR, with additional control to ensure a similar
relaxation speed for both channels [Rezac et al., 2015]. A detailed error analysis was performed, which reveals
that the Tk and CO2 VMR profile uncertainties are dominated by systematic errors. The largest uncertainty is
attributed to non-LTE modeling parameters, such as collisional rate coefficients, and also to the assumed
density of the collisional partners, such as atomic [O] and [O(1D)] above 90 km. Table 1 summarizes the error
budget of the daytime retrieved CO2 VMR under non-LTE conditions representative of an instantaneous
profile. The individual errors, as well as the total error (root-sum-square, or RSS), are detailed for six altitude
regions in the MLT. The error analysis was carried out by simulating measured radiance for nominal
atmospheric and forward model input values. The individual parameters were then perturbed one at a time,
and the two-channel inversion algorithm was iterated until convergence. The mean error was calculated
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for four different input atmospheric
conditions. The individual error sources
below 90 km altitude are given only as
a total RSS, because the SABER CO2

VMR profile is constrained to not
exceed 15% of the constant value
below 65 km. The complete details of
all the individual error sources are
presented in Rezac et al. [2015].

The inversion is applied in the altitude
ranges 65–110 km and 65–130 km for Tk
and CO2 VMR, respectively. Therefore,
the actual self-consistent two-channel
retrieval applies only in the altitude range
65–110 km. The retrieved Tk and CO2

VMR values at the lower boundary are
constrained to smoothly join the
SABER operationally retrieved tempera-
tures (http://saber.gats-inc.com/) and
the WACCM CO2 VMR profile, while at
the upper boundary they join with the

WACCM supplied Tk and CO2 VMR profiles (for more details, see Rezac et al. [2015]). The SABER operational
Tk retrieval is performed using the so-called interleaving process, where essentially five separate retrievals
are performed on a 2 km vertical grid spacing with each one shifted by 0.375 km (vertical scan sampling
resolution). After convergence, these five retrievals are then averaged together to obtain a single profile
with about 2 km vertical resolution [Remsberg et al., 2008]. In the case of the two-channel inversion, only
a single retrieval is made on a uniform 1 km altitude grid. Due to the nature of the two-channel inverse

Table 1. Two-Channel CO2 VMR Retrieval Errors (%) and Their Sourcesa

Altitude (km)

Error Sourceb 70 80 90 100 110

Random noisec - ±1 ±1 ±2
Radiance biasd - - ±1 ±2 ±1
P(z = 0) bias - ±4 ±4 ±3
T(z) bias - - ±6 ±6 ±4
Atomic O bias - ±2 ±7 ±13
O(1D) bias - - ±5 ±14 ±23
Kvv N2-O(

1D) - - ±3 ±9 ±11
Kvt CO2-O - - ±1 ±2 ±5
Kvt CO2(υ3� υ2)

e - - ±3 ±3 ±4
Kvv CO2-N2 - - ±6 ±3 ±10
Root-sum-square ±15 ±15 ±12 ±21 ±32

aCO2 VMR retrieved at altitudes between 110 and 130 km relies on
the WACCM inputs. While these are consistent with each other, the
parameters such as O and O(1D) are not known very accurately. For
these reason, the error may be in fact larger than indicated (assumed
accuracy of 50%).

bCO2 VMR in (%).
cSABER noise equivalent radiance values.
dReference pressure at 30 km.
eSplitting of CO2 υ3 quanta into 1–4 (υ2) quanta in V-T collisionswith N2.

Figure 1. (left) Comparison of mean CO2 VMR profiles between SABER (blue line) and ACE-FTS (red line) assembled from
9 years of coincident measurements as discussed in the text. Mean CO2 VMR profiles from CRISTA-1 [Kaufmann et al.,
2002] (black line) and the Rocket measurements [Wintersteiner et al., 1992] (magenta line) are shown for comparison. The
uncertainties for each instrument are indicated by the error bars at the selected altitudes. All profiles are scaled to the same
value at 60 km. (right) The mean relative difference between coincident SABER and ACE-FTS CO2 pairs is plotted as the
blue curve on the right, and the error bars indicate the standard deviation of the difference. The combined uncertainty of
SABER and ACE is indicated in shaded area. CRISTA-1 profile is scaled to match the SABER CO2 at 60 km.
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problem under non-LTE, and partly because of the applied smoothing regularization during the relaxation
iteration (2 km sliding boxcar window), the vertical resolution of the Tk profiles is 3–6 km depending on
how many iterations the inversion takes. In general, it takes more iterations to reach convergence under
cold summer mesopause conditions. The non-LTE effects are very strong in the 4.3 μm emissions (starting
below 65 km), which leads to additional degradation of the vertical resolution of the CO2 VMR due to photon
scattering in the 65–80 km region. The typical vertical resolution for CO2 VMR varies between 4 and 12 km,
depending on the season, and better resolution (4–6 km) is generally achieved during the equinoxes. In the
summer high latitudes below 90km, the vertical resolution is lost completely, because the SABER
observations are constrained to retrieve a mean value in the range (65–90 km). The mean is assigned to a
(average) grid point at 77 km with a line fit in between the end points (for detailed reasoning and discussion,
see Rezac et al. [2015]).

Figure 2. (top left) Comparison of mean SABER (blue line) and mean ACE-FTS (red line) kinetic temperature profiles
for all coincident pairs along with the standard deviation of the mean (shown as error bars). (top right) Mean of the
temperature differences (SABER-ACE-FTS) shown as the blue curve with the standard deviation of the mean shown as
error bars. The combined uncertainty of SABER and ACE-FTS is indicated in the shaded area. (bottom left) Comparison of
mean SABER (blue line) andmean ACE-FTS (red line) CO2 number densitymeasurements with standard deviation of themean
as error bars selected at several altitudes. (bottom right) Mean relative difference between the two data sets (blue curve)
with the standard deviation (blue error bars). The shaded area, as before, shows the combined uncertainty of the CO2
number density.
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4. SABER CO2 Validation Studies
4.1. Comparison With Coincident ACE-FTS Data

The SABER CO2 data for 2004–2012 are first compared with coincident ACE-FTS version 3.0 observations. We
have applied a screening process to the ACE-FTS database to discard bad data in the same way as was done
by Garcia et al. [2014]. The distribution of CO2 in the MLT (below about 10�4 hPa) is mainly controlled by eddy
diffusion and molecular diffusive separation instead of photolysis [Garcia et al., 2014]. Thus, a wider range of
coincidence criteria can be applied compared to that of temperature (±5° for latitude, ±10° for longitude, and
±4 h for time), similar to the approach used by Rong et al. [2009] for SABER ozone validation.

The majority of coincident pairs occur in the latitude ranges of ±50 to ±80° in the equinox months. Among
the total of 943 coincident pairs, about 800 pairs occur in March and about 100 pairs occur in September, with
more than 650 pairs occurring between the latitudes 70–80°. This is a direct result of the spatial sampling of
ACE-FTS observations that are optimized for measurements in the polar regions.

Figure 3. (top left) Comparison of the March and September mean vertical profile from SABER operationally retrieved v2.0
kinetic temperature (blue line) and the simultaneously retrieved SABER Tk/CO2 kinetic temperature (red line). (bottom left)
The same comparison as before but for the January and July mean summer hemisphere (see text). (right column) The
associated mean differences are in blue color with the standard deviation of the differences indicated as error bars. The
combined uncertainty of the two retrievals is shown as a shaded area in Figure 3 (right column).
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Independent measurements in the past
decade have shown that CO2 above
about 80 km is not uniformly mixed
but exhibits considerable temporal and
spatial variability. In Figure 1, mean
CO2 VMR profiles obtained from
CRISTA-1 and mean rocket measure-
ments [Wintersteiner et al., 1992] are
plotted for qualitative comparison with
the ACE-FTS and SABER. Figure 1 (left
column) shows the comparison of mean
profiles including all the coincident
SABER and ACE-FTS CO2 VMR data in
the 9 year period 2004–2012 with the
total (random and systematic) uncertain-
ties shown as error bars. The ACE-FTS data
have been interpolated onto a 1 km grid,
which is used in SABER postoperational
processing retrievals. Both the ACE-FTS
and SABER CO2 VMR profiles show a rapid
decrease above ~80km (defined as the
“knee” of the profile). The SABER CO2 pro-
file has the same slope (~10ppmv/km) as

the ACE-FTS profile above ~85km. Above ~100km, these two profiles diverge from each other with the mean
ACE-FTS CO2 VMR being generally greater than the SABER VMR. Nevertheless, the mean profiles are within the
estimated uncertainties of each other nearly over the entire altitude range up to 100 km. The estimated vertical
resolution of SABER is very similar to that of ACE-FTS (about 4–5km) in these coincident profile comparisons
which apply to the equinox season. No additional measures for possibly different averaging kernels (AKs)
between the instruments were taken into account in these comparisons. Since neither SABER nor ACE-FTS
inversion calculations provide routine AKs for the converged solution, it is not possible to account for
inverse process smoothing of the true profile as proposed by Rodgers and Connor [2003]. In order to
display statistically sound comparisons, we plot the total combined error of SABER and ACE-FTS as a
shaded region in the figures. The error bars include the effects of smoothing of the true profiles by the
inversion (by virtue of how the errors are estimated, see Rezac et al. [2015]). The CRISTA-1 observations
shown in Figure 1 were obtained in November 1994 and covered a latitude range from 52°S to 63°N
[Kaufmann et al., 2002]. The global mean CRISTA-1 CO2 profile starts departing from a well-mixed value
at ~72 km, which is much lower than SABER and ACE-FTS, as well as the rocket measurement. Figure 1
(right column) shows the relative difference between the SABER and ACE-FTS measurements. Here the
relative difference is defined as (VMRSABER-VMRACE)/VMRACE, and the total error is defined as the root-
sum-square of uncertainties of both the SABER CO2 and ACE-FTS CO2 VMR. [Beagley et al., 2010]. The
SABER CO2 VMR is systematically slightly lower than the ACE-FTS VMR over the entire MLT. The relative
differences are smaller than 5% below 100 km; above ~100 km the differences increase significantly and reach
~20% at 110 km. The standard deviation of the relative differences shown as the error bars (on the blue curve) is
still within the combined systematic uncertainties of the two measurements.

Both SABER and ACE-FTS obtain CO2 VMR and temperature simultaneously in the range 65–110 km. Therefore,
comparing CO2 number density is also highly desirable, as this quantity is of direct interest for photochemical
models. Figure 2 shows a comparison of the kinetic temperature and CO2 number density from coincident
SABER and ACE-FTS measurements. Beagley et al. [2010] estimate the uncertainties of ACE-FTS temperature as
a constant 6K for altitudes above 60 km, while the detailed temperature uncertainty for the SABER 2-channel
inversion is detailed as a function of altitude in Rezac et al. [2015]. The combined uncertainties are denoted by
pink shading in Figure 2 (right column). The mean of the temperature difference between SABER and ACE-FTS
is smaller than 4K below 85 km, which is consistent with the validation results of Sica et al. [2008], although their
work focused on the region below 70km and they used an early version of SABER temperature. From 85km to
100 km, the two data sets match very well, although their variance is relatively large.

Figure 4. Global mean CO2 VMR profiles for 2004 to 2012 from SABER
(full blue) and ACE-FTS (full red). Two SD-WACCMmean CO2 VMR profiles
are also shown as dash-dotted lines. The SD-WACCM results correspond
to the weighted average taking into account the space time sampling of
the zonal means by the instrument. WACCM data corresponding to the
sampling of SABER and ACE-FTS data are shown by the dash-dotted blue
curve and the dash-dotted red curve, respectively. See detailed discussion
in the text.
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Currently, the operational SABER v2.0 kinetic temperature retrieval uses the CO2 VMR fromWACCM similar
to the v1.07 retrieved temperature profiles [Remsberg et al., 2008]. As indicated earlier, the simultaneously
retrieved Tk/CO2 data obtained in a postprocessing mode are publicly available on the SABER website.
The comparison between SABER v2.0 temperature and simultaneously retrieved Tk/CO2 at the equinox
(March and September, combined) and summer (Northern Hemisphere in July and Southern Hemisphere in
January, combined) for high latitudes (±50–82°) is shown in Figure 3. The simultaneously retrieved Tk is ~5K
colder than SABER v2 temperature at 80–95 km in the summer polar region. The difference between these
two SABER temperature results above 100 km is comparable to the measurement uncertainties (>10K).
(Additional details on the two SABER Tk data sets and their uncertainties are provided at the SABER
website: http://saber.gats-inc.com/temp_errors.php).

4.2. Comparison Between SABER CO2 and the SD-WACCM Simulations

As an upper atmosphere extension of the Community Atmosphere Model, WACCM has been used to study the
chemistry, radiation, and dynamics in the middle and upper atmosphere and their impact on the Earth’s climate
[Smith et al., 2011]. This model extends from the surface to the thermosphere (~5.96 × 10�6 hPa or ~ 140 km).

Figure 5. (a) Monthly zonal mean SABER CO2 VMR (ppmv) altitude versus latitude cross sections for January through
June averaged over the 9 year period from 2004 to 2012. (b) Same as Figure 5a but for the period July through December.
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Adetailed descriptionofWACCMv4 is givenbyMarsh et al. [2013].Garcia et al. [2007] showed that the temperature
and zonal winds in WACCM are consistent with global satellite observations. Smith et al. [2011] used WACCM to
study the relationship between the transformed Eulerian mean (TEM) circulation and the distribution of CO2 in
the MLT. In this paper, output from the specified dynamics version of the model, SD-WACCM, for the period from
2003 to 2012 is used. The dynamics and temperature in the troposphere and stratosphere in SD-WACCM are
constrained by data from NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA)
[Rienecker et al., 2011]; therefore, the dynamics in SD-WACCM follows MERRA observations in the altitude range
where MERRA data are available over this period. The model transitions to free running above about 1hPa.

These model results compared here were obtained with a Prandtl number of 4, which is the standard setting
in WACCM4. The Prandtl number, Pr, is the ratio of momentum diffusivity to thermal diffusivity and may be
considered a tunable parameter in the gravity wave parameterization used in WACCM. Recently, Garcia et al.
[2014] showed that using Pr = 2 could give better agreement between the CO2 VMR calculated with WACCM
and ACE-FTS measurements than Pr = 4. The smaller Pr leads to a larger eddy diffusion coefficient, which
increases the VMR of CO2 above 80 km. They also showed that realistic CO could be obtained concurrently
if all known sources of CO from CO2 were included in the calculation and a relatively small value for the cross
section of O2 was used in the frequency band 105–121 nm. Notwithstanding, the specification of additional

Figure 5. (continued)
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loss mechanisms for CO2, the vertical
profile of the latter was affected rela-
tively little because photolytic loss is
not a major component of the CO2 bud-
get below 10�4 hPa.

Figure 4 shows the profiles of global
annual mean CO2 VMR profiles from
SABER, ACE-FTS measurements, and
the SD-WACCM simulation. Unlike the
SD-WACCM output, the spatial and
temporal sampling of ACE-FTS data are
quite inhomogeneous, and while
SABER data are sampled much more
uniformly, they are obtained only for
daytime in the case of CO2. For this rea-
son the two SD-WACCM profiles in
Figure 4 are weighted means with the
number of profiles available in a given
month and latitude bin for SABER and
ACE-FTS as the weights. The effect of
the seasonal variability and general cir-
culation is largely removed in the
annual, global means, while only eddy
diffusion and molecular diffusion deter-
mine the shapes of the profiles. It is
obvious that the WACCM CO2 falls off
from its well-mixed state at lower alti-
tudes (~5 km) compared to ACE-FTS
and SABER. This may be taken to imply
an underestimation of vertical eddy dif-

fusion in SD-WACCM with the standard setting, Pr = 4. The effects of increasing the eddy mixing by reducing
the Pr number result in a better match of the model with the measurements, as noted above and discussed
by Garcia et al. [2014].

The 9 year (2004–2012) zonally averaged SABER CO2 VMR distribution for each month is shown in Figure 5. We
note that, because of the long duration of the SABER data set and its broad spatial and temporal coverage, the
cross section of monthly CO2 VMR is unprecedentedly complete despite the fact that SABER CO2 VMR is
obtained only during daytime. The main features revealed by the SABER CO2 VMR zonal mean distributions
are (1) notable seasonal variability at high latitudes, (2) very rapid decrease of the CO2 VMR above 90 km in polar
summer, (3) early departure from a well-mixed CO2 profile during the equinoxes, especially at high latitudes
(usually around 75–80km), and (4) generally lower CO2 VMR around 110km altitude during equinox seasons
compared to solstice. It is clear that CO2 isolines in the MLT are relatively close together at summer high lati-
tudes and farther apart in the winter polar region, as in the WACCM simulation discussed by Smith et al.
[2011]. To relate the CO2 distribution to the general circulation, Figure 6 illustrates the SD-WACCM TEMmeridio-
nal and vertical wind vector for January (solstice). The TEM during solstice shows two circulation patterns in two
layers. Below about 90 km, there is upwelling in summer and downwelling in winter; above 90 km, the opposite
pattern appears, with upwelling in winter and downwelling in summer. As discussed in Smith et al. [2011], the
different patterns of the residual circulation below and above 90km are induced by a change of sign in the
zonal mean zonal force due to breaking gravity waves. Since CO2 has a long enough lifetime to be a tracer
on a seasonal time scale, convergence in the winter causes a higher concentration of CO2 while divergence
has the opposite effect, consistent with the SABER observations shown in Figure 5.

Most coincident SABER and ACE-FTSmeasurements occur in March and September and within latitude bands
of ±50 to ±80°. Consequently, the coincident pair comparisons in Figure 1 may not reflect accurately the

Figure 6. Nine year (2004–2012) zonal mean SD-WACCM transformed
Eulerian circulation shown for January. (top) A global view of the TEM
circulation pattern. (bottom) A zoomed-in view to better illustrate the reversal
of the TEM meridional circulation above 90–95 km (see text for details).
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mean averaged over the different seasons. Therefore, the zonal mean distribution of CO2 VMR from SABER,
ACE-FTS observations, and SD-WACCM simulations as a function of latitude and altitude are compared
in Figures 7–10.

The SD-WACCM simulations indicate that, during solstice, due to the upward transport in the summer hemi-
sphere and downward transport in the winter hemisphere below 90 km, the CO2 VMR remains constant up to
higher altitudes in the summer hemisphere and departs from its well-mixed value at lower altitudes in the
winter hemisphere. This pattern is shown in the WACCM cross sections in Figures 7 and 8. The altitude of con-
stant SABER CO2 VMR remains at 90 km from the southern polar region to 20°N, then decreases very rapidly
with increasing latitude, while the altitude of constant CO2 VMR in WACCM decreases gradually from the
south polar region. Thus, in the northern polar region below about 95 km, the vertical gradient of SABER
CO2 is considerably smaller than the vertical gradient from the WACCM simulation. On the other hand, the
summer to winter slope of the CO2 distribution is not obvious in the ACE-FTS CO2 cross section. As a conse-
quence, above 100 km, the ACE-FTS CO2 VMR in the summer polar region is much higher than the SABER mea-
surements and theWACCM simulation. Also, themeridional distribution of ACE-FTS CO2 is not as “smooth” as the
other two CO2 data sets, presumably due to the sparseness of ACE-FTS measurements. Below 95 km, the magni-
tude of the relative difference between SABER and ACE-FTS CO2 is less than 10% except near 30°N, where the
ACE-FTS CO2 VMR reaches 400ppmv, which is likely an outlier, as such a value was not reached in troposphere
during the period investigated here. Above 95 km, the difference gradually increases to 25%, except in the sum-
mer polar region. This is consistent with the coincident measurement comparison.

In the summer season there is a notable discontinuity (an increase or a decrease in VMR depending on the
hemisphere) in SABER CO2 near 50°, as shown in Figure 5, while the WACCM CO2 distributions are quite
smooth. This feature is a result of a local SABER time sampling bias arising from using only the daytime mea-
surements in the current CO2 retrievals. At latitudes poleward of 50° only local morning/evening atmospheric
conditions are probed (see Figure 1 in Rezac et al. [2015]), which in turn leads to a bias in the typical pressure
profiles compared to the scenario where we average morning and afternoon data together. This ultimately

Figure 7. (top left) January zonal mean SABER CO2 VMR (ppmv) altitude versus latitude cross section over the 9 year period
from 2004 to 2012. (top right). Same as Figure 7 (top left) except for ACE-FTS. (bottom left) Cross section of the mean
relative difference (%) between SABER and ACE-FTS, and (bottom right) January zonal mean SD-WACCM CO2 (ppmv)
altitude versus latitude cross section over the same 9 year period.
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results in a noticeable drop or increase (depending on the hemisphere) in the SABER CO2 VMR. As the mea-
surement point moves toward the poles, at around 60–70°, polar day conditions with a constant 24h illumina-
tion are encountered, where the temperatures are higher again starting from the lower stratosphere to the lower
mesosphere (15–60 km), which affects the lower atmospheric pressure. This feature can also be clearly seen in the
pressure distribution between themorning and evening local times at 35 km (figure not shown). The origin of this
anomaly is therefore clear and removes any questions about it being an artifact of influence from above such as
NO+ and/or aurora effects on CO2 emissions.

The convergence of CO2 in the polar regions (south in March and north in September) is not present in the
equinox months, since the meridional circulation is much different from the solstice conditions. The SABER
CO2 distributions match the WACCM CO2 better in equinox seasons than in solstice months, as shown in
Figures 9 and 10. Above 90 km, the WACCM CO2 distribution has a wavy shape, i.e., there are maxima at mid-
latitudes and minima at the equator and in the polar regions. This wavy feature reflects the WACCM TEM cir-
culation pattern at high altitudes, converging and sinking at the equator, diverging and rising at midlatitudes
(not shown). This wavy feature can also be seen in the SABER CO2 distribution, although the magnitude is
much weaker than that in SD-WACCM. As in the solstice months, except in the region 0–20°N above
90 km, the SABER CO2 VMR is smaller than the ACE-FTS CO2 VMR near the equinox. As the altitude increases,
the magnitude of the relative difference increases gradually, though the magnitude (<25%) is not as large as
in the solstice months (>30%). In general, it should be kept in mind that the current SABER CO2 data are
collected only for daytime conditions, and the effects of tides, at low latitude to midlatitude, could be present
in the zonal mean cross sections especially during the equinox seasons.

5. Conclusions

Comparison of SABER CO2 VMR over the 65–110 km range with coincident ACE-FTS measurements indicates
that these two data sets provide consistent results in terms of the vertical shape of the profiles. Although the
SABER CO2 measurement is systematically lower than the ACE-FTS in the MLT, the discrepancy is within the
uncertainties of each data set. From 65 to ~100 km, the mean difference between the two data sets is smaller

Figure 8. Same as Figure 7 but for July.
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than 5% but it increases to 20% at 110km. Even at the 1σ level, the difference is still smaller than the combined
uncertainties of the two data sets. The comparison of kinetic temperature and CO2 number density yields a
similar result with the differences being within the combined error of the two retrievals. However, the CO2

number density differences are slightly larger than CO2 VMR differences between SABER and ACE-FTS.

Figure 9. Same as Figure 7 but for March.

Figure 10. Same as Figure 7 but for September.
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We also investigated the mean differences between the SABER operationally retrieved temperatures and the
two-channel retrieved temperatures self-consistently obtained with the CO2 VMR. The comparison between
SABER operational v2.0 kinetic temperature and the temperature from the simultaneous Tk/CO2 retrievals
indicates that during the solstice months in the polar regions the mean difference is > 5 K at 85–90 km
(operational Tk is higher). Nevertheless, the differences are within the combined measurement uncertainties.

Altitude versus latitude cross sections of monthly and zonal mean CO2 VMRs from SABER measurements and
SD-WACCM simulations show overall agreement in terms of the seasonal variation and vertical distribution
throughout the mesosphere and lower thermosphere. Both data sets show that the strongest vertical gradient
of CO2 occurs above the polar summer mesopause. Examination of the mean meridional circulation in WACCM
suggests that this behavior is due the fact that the meridional circulation in the lower thermosphere reverses
relative to its counterpart in the mesosphere at about 90–95km (cf. Figure 6). The behavior of the general cir-
culation toward thewinter hemisphere is also well captured by the SABER CO2 VMR distribution, demonstrating
the seasonal variations. We note that some of these features cannot be found in the ACE-FTS monthly zonal
mean observations because of the sparse temporal and spatial coverage.
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