37 research outputs found

    A history of extreme disturbance affects the relationship between the abundances of nitrifiers in soil

    Get PDF
    To understand how and to what extent single or multiple perturbations can alter the relationships between the abundances of different nitrifier groups and nitrification, soil microcosms were exposed to six disturbance treatments: a heat shock, cold shock, or control conditions applied to undisturbed soils or to soils that had previously been subjected to a first heat shock. We monitored the recovery of the abundances of four main nitrifier groups (ammonia-oxidizing archaea and bacteria, AOA and AOB, respectively, andNitrobacterandNitrospiranitrite oxidizers) as well as nitrification activity for 25 days. AOA were sensitive to cold shocks, whereas AOB were not; the latter were sensitive to heat shock. Despite the variations, both groups were resilient to the first disturbance. In contrast,Nitrobacterwas affected by both disturbances, whereasNitrospirawas resistant to both shocks. Prior exposure to a heat shock affected each group's responses as well as the relationships between them. For example, AOB were more vulnerable to heat shock in pre-exposed soils, whereas under the same circumstances, AOA were resilient. Nitrification activity was resistant to the first disturbances, but a legacy effect was observed, and nitrification was highest in Heat-Heat and lowest in Heat-Cold treatments. Overall, our study shows that within soil nitrifiers, temporal patterns and legacy effects interact to result in complex disturbance responses

    Biodiversity conservation, ecosystem services and organic viticulture: A glass half-full

    Get PDF
    Organic farming is a promising but still debated option to ensure sustainable agriculture. However, whether organic farming fosters synergies or mitigates tradeoffs between biodiversity, ecosystem services and crop production has rarely been quantified. Here, we investigate relationships between multitrophic diversity (14 taxa above and belowground), yield, natural pest control and soil quality (14 proxies of ecosystem services) in organic and conventional vineyards along a landscape gradient. Organic farming enhanced biodiversity and pest control, but decreased wine production. Compared to conventional systems, multitrophic diversity was 15 % higher, and pest control services were 9 % higher in organic systems, while wine production was 11 % lower. Regardless of management type, we found a strong tradeoff between wine production and pest control, but not between wine production and biodiversity. The landscape context was not a strong moderator of organic farming effects across taxa groups and ecosystem services, but affected specific taxa and ecosystem services, especially natural pest control. Our study reveals that wine production and biodiversity conservation do not necessarily exclude each other, which implies the existence of a safe operating space where biodiversity and wine production can be combined. We conclude that organic farming can contribute to improve the sustainability of viticulture, but needs to be complemented by management options at the local and landscape scales in order to fully balance biodiversity conservation with the simultaneous provision of multiple ecosystem services.This research was funded by the research project SECBIVIT, which was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND program, with the funding organizations: Agencia Estatal de Investigación (Ministerio de Ciencia e Innovación/Spain, grant PCI2018-092938; MCIN/AEI/10.13039/501100011033); Austrian Science Fund (FWF) (grant number I 4025-B32); Federal Ministry of Education and Research (BMBF/Germany) (grant number 031A349I); French National Research Agency (ANR); Netherlands Organization for Scientific Research (NWO); National Science Foundation (grant #1850943); and Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding (UEFISCDI). The authors also acknowledge the support of the ECOPHYTO 2+ Plan under the grant X4IN33VI (OPERA project) as well as the support the French National Research Agency (ANR) under the grant 20-PCPA-0010 (PPR Vitae, Cultivating the grapevine without pesticides: towards agroecological wine-producing socio-ecosystems). We thank Evelyne Thys and Hugo Hernandez for their help in field sampling, Lionel Delbac for the Lobesia botrana rearing, Alexis Saintilan for identifying pollinators, and Edith Gruber for identifying earthworms

    A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases

    Get PDF
    Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD

    Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target

    Get PDF
    BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD

    Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities

    No full text
    International audienceMany studies have focused on the impact of intense drought and rain events on soil functioning and diversity, but little attention has been paid to the response of microbial communities to non-extreme soil moisture variations. However, small fluctuations of soil water content represent a common situation that ought to be examined before understanding and deciphering the impact of extreme events. Here, we tested the impact of a decrease in average soil water content and small water content fluctuations in non-extreme conditions on microbial community composition and C mineralisation rate of a temperate meadow soil. Two soil microcosm sets were incubated at high and low constant moisture and a third set was subjected to 4 short dry–wet cycles between these two soil moistures. No robust change in bacterial community composition, molecular microbial biomass, and fungal:bacterial ratio were associated with soil water content change. On the contrary, the fungal community composition rapidly alternated between states corresponding to the high and low levels of soil moisture content. In addition, gross C mineralisation was correlated with soil moisture, with a noteworthy absence of a Birch effect (C over-mineralisation) during the wetting. This study suggests that some fungal populations could coexist by occupying different moisture niches, and high fungal community plasticity would classify them as more sensitive indicators of soil moisture than bacteria. Moreover, under non-stressed conditions, the community composition did not affect metabolic performance so a future decrease in average soil moisture content should not result in a supplemental loss in soil carbon stocks by a Birch effect

    Ecological risk assessment of mixtures of radiological and chemical stressors Methodology to implement an msPAF approach

    No full text
    International audienceA main challenge in ecological risk assessment is to account for the impact of multiple stressors. Nuclear facilities can release both radiological and chemical stressors in the environment. This study is the first to apply species sensitivity distribution (SSD) combined with mixture models (concentration addition (CA) and independent action (IA)) to derive an integrated proxy of the ecological impact of combined radiological and chemical stressors msPAF (multisubstance potentially affected fraction of species). The approach was tested on the routine liquid effluents from nuclear power plants that contain both radioactive and stable chemicals. The SSD of ionising radiation was significantly flatter than the SSD of 8 stable chemicals (namely Cr, Cu, Ni, Pb, Zn, B, chlorides and sulphates). This difference in shape had strong implications for the selection of the appropriate mixture model contrarily to the general expectations the IA model gave more conservative (higher msPAF) results than the CA model. The msPAF approach was further used to rank the relative potential impact of radiological versus chemical stressors. The msPAF approach combining SSD and mixture models was used for the first time on mixtures of radiological and chemical stressors. © 2017 Elsevier Lt
    corecore