616 research outputs found
Event-Triggered Observers and Observer-Based Controllers for a Class of Nonlinear Systems
In this paper, we investigate the stabilization of a nonlinear plant subject
to network constraints, under the assumption of partial knowledge of the plant
state. The event triggered paradigm is used for the observation and the control
of the system. Necessary conditions, making use of the ISS property, are given
to guarantee the existence of a triggering mechanism, leading to asymptotic
convergence of the observer and system states. The proposed triggering
mechanism is illustrated in the stabilization of a robot with a flexible link
robot.Comment: Proceedings of the 2015 American Control Conference - ACC 201
Local yield stress statistics in model amorphous solids
We develop and extend a method presented in [S. Patinet, D. Vandembroucq, and
M. L. Falk, Phys. Rev. Lett., 117, 045501 (2016)] to compute the local yield
stresses at the atomic scale in model two-dimensional Lennard-Jones glasses
produced via differing quench protocols. This technique allows us to sample the
plastic rearrangements in a non-perturbative manner for different loading
directions on a well-controlled length scale. Plastic activity upon shearing
correlates strongly with the locations of low yield stresses in the quenched
states. This correlation is higher in more structurally relaxed systems. The
distribution of local yield stresses is also shown to strongly depend on the
quench protocol: the more relaxed the glass, the higher the local plastic
thresholds. Analysis of the magnitude of local plastic relaxations reveals that
stress drops follow exponential distributions, justifying the hypothesis of an
average characteristic amplitude often conjectured in mesoscopic or continuum
models. The amplitude of the local plastic rearrangements increases on average
with the yield stress, regardless of the system preparation. The local yield
stress varies with the shear orientation tested and strongly correlates with
the plastic rearrangement locations when the system is sheared correspondingly.
It is thus argued that plastic rearrangements are the consequence of shear
transformation zones encoded in the glass structure that possess weak slip
planes along different orientations. Finally, we justify the length scale
employed in this work and extract the yield threshold statistics as a function
of the size of the probing zones. This method makes it possible to derive
physically grounded models of plasticity for amorphous materials by directly
revealing the relevant details of the shear transformation zones that mediate
this process
Atypical haemolytic-uraemic syndrome caused by factor H mutation: case report and new management strategies in children
Atypical haemolytic uraemic syndrome is causedby alternative complement pathway dysregulation. It has recently been recognised that most cases are due to genetic factors and a growing list of mutations has been described. Atypical haemolytic uraemic syndrome is associated with a dismal prognosis, a relapsing course, high acute mortality and frequent progression to end-stage renal disease.
We describe a five-year-old boy admitted with a first recurrence of atypical haemolytic uraemic syndrome. The primary onset of the disease was at 15 months of age, following which there was complete recovery of haematological and renal parameters. His family history was significant in that his mother had died at the age of only 23 years of a stroke with associated thrombotic microangiopathy, suggesting a familial form of the disease. Sequencing of the gene encoding complement factor H revealed a heterozygous SCR20 mutation (3644G>T, Arg1215Leu), confirming the diagnosis. The patient was successfully treated with fresh frozen plasma infusions that induced disease remission.
We also review currently evolving concepts about atypical haemolytic uraemic syndrome caused by factor H mutation, its diagnosis, the role of genetic testing and management strategies in children
Collisions of particles in locally AdS spacetimes II Moduli of globally hyperbolic spaces
We investigate 3-dimensional globally hyperbolic AdS manifolds containing
"particles", i.e., cone singularities of angles less than along a
time-like graph . To each such space we associate a graph and a finite
family of pairs of hyperbolic surfaces with cone singularities. We show that
this data is sufficient to recover the space locally (i.e., in the neighborhood
of a fixed metric). This is a partial extension of a result of Mess for
non-singular globally hyperbolic AdS manifolds.Comment: 29 pages, 3 figures. v2: 41 pages, improved exposition. To appear,
Comm. Math. Phys. arXiv admin note: text overlap with arXiv:0905.182
Fuchsian convex bodies: basics of Brunn--Minkowski theory
The hyperbolic space \H^d can be defined as a pseudo-sphere in the
Minkowski space-time. In this paper, a Fuchsian group is a group of
linear isometries of the Minkowski space such that \H^d/\Gamma is a compact
manifold. We introduce Fuchsian convex bodies, which are closed convex sets in
Minkowski space, globally invariant for the action of a Fuchsian group. A
volume can be associated to each Fuchsian convex body, and, if the group is
fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be
studied in the same manner as convex bodies of Euclidean space in the classical
Brunn--Minkowski theory. For example, support functions can be defined, as
functions on a compact hyperbolic manifold instead of the sphere.
The main result is the convexity of the associated volume (it is log concave
in the classical setting). This implies analogs of Alexandrov--Fenchel and
Brunn--Minkowski inequalities. Here the inequalities are reversed
Notes on a paper of Mess
These notes are a companion to the article "Lorentz spacetimes of constant
curvature" by Geoffrey Mess, which was first written in 1990 but never
published. Mess' paper will appear together with these notes in a forthcoming
issue of Geometriae Dedicata.Comment: 26 page
Probing mSUGRA via the Extreme Universe Space Observatory
An analysis is carried out within mSUGRA of the estimated number of events
originating from upward moving ultra-high energy neutralinos that could be
detected by the Extreme Universe Space Observatory (EUSO). The analysis
exploits a recently proposed technique that differentiates ultra-high energy
neutralinos from ultra-high energy neutrinos using their different absorption
lengths in the Earth's crust. It is shown that for a significant part of the
parameter space, where the neutralino is mostly a Bino and with squark mass
TeV, EUSO could see ultra-high energy neutralino events with
essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the
unprecedented aperture of EUSO makes the telescope sensitive to neutralino
fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1}
sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive
particles' -body hadronic decay. The case in which the flux of ultra-high
energy neutralinos is produced via decay of metastable heavy particles with
uniform distribution throughout the universe is analyzed in detail. The
normalization of the ratio of the relics' density to their lifetime has been
fixed so that the baryon flux produced in the supermassive particle decays
contributes to about 1/3 of the events reported by the AGASA Collaboration
below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete
agreement with EGRET data. For this particular case, EUSO will collect between
4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's
planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also
briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical
Review
Geometry and observables in (2+1)-gravity
We review the geometrical properties of vacuum spacetimes in (2+1)-gravity
with vanishing cosmological constant. We explain how these spacetimes are
characterised as quotients of their universal cover by holonomies. We explain
how this description can be used to clarify the geometrical interpretation of
the fundamental physical variables of the theory, holonomies and Wilson loops.
In particular, we discuss the role of Wilson loop observables as the generators
of the two fundamental transformations that change the geometry of
(2+1)-spacetimes, grafting and earthquake. We explain how these variables can
be determined from realistic measurements by an observer in the spacetime.Comment: Talk given at 2nd School and Workshop on Quantum Gravity and Quantum
Geometry (Corfu, September 13-20 2009); 10 pages, 13 eps figure
D-Matter
We study the properties and phenomenology of particle-like states originating
from D-branes whose spatial dimensions are all compactified. They are
non-perturbative states in string theory and we refer to them as D-matter. In
contrast to other non-perturbative objects such as 't Hooft-Polyakov monopoles,
D-matter states could have perturbative couplings among themselves and with
ordinary matter. The lightest D-particle (LDP) could be stable because it is
the lightest state carrying certain (integer or discrete) quantum numbers.
Depending on the string scale, they could be cold dark matter candidates with
properties similar to that of wimps or wimpzillas. The spectrum of excited
states of D-matter exhibits an interesting pattern which could be distinguished
from that of Kaluza-Klein modes, winding states, and string resonances. We
speculate about possible signatures of D-matter from ultra-high energy cosmic
rays and colliders.Comment: 25 pages, 5 figures, references adde
- …
