60 research outputs found

    The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaff ected by exposure to 50 Hz magnetic fi elds

    Get PDF
    Following in utero exposure to low dose radiation (10 – 200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No signifi cant induction of DSB or apoptosis was observed following exposure to magnetic fi elds (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods : 53BP1 foci were quantifi ed following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 m T for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results : Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions : We conclude that in this sensitive system MF do not exert any signifi cant level of DNA damage and do not impede the repair of X-ray induced damage

    Dicentric Dose Estimates for Patients Undergoing Radiotherapy in the RTGene Study to Assess Blood Dosimetric Models and the New Bayesian Method for Gradient Exposure.

    Get PDF
    The RTGene study was focused on the development and validation of new transcriptional biomarkers for prediction of individual radiotherapy patient responses to ionizing radiation. In parallel, for validation purposes, this study incorporated conventional biomarkers of radiation exposure, including the dicentric assay. Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumors. For the dicentric assay, two samples were taken from each patient: prior to radiotherapy and before the final fraction. Blood samples were set up using standard methods for the dicentric assay. All the baseline samples had dicentric frequencies consistent with the expected background for the normal population. For blood taken before the final fraction, all the samples displayed distributions of aberrations, which are indicative of partial-body exposures. Whole-body and partial-body cytogenetic doses were calculated with reference to a 250-kVp X-ray calibration curve and then compared to the dose to blood derived using two newly developed blood dosimetric models. Initial comparisons indicated that the relationship between these measures of dose appear very promising, with a correlation of 0.88 (P = 0.001). A new Bayesian zero-inflated Poisson finite mixture method was applied to the dicentric data, and partial-body dose estimates showed no significant difference (P > 0.999) from those calculated by the contaminated Poisson technique. The next step will be further development and validation in a larger patient group

    Realising the European network of biodosimetry: RENEB-status quo

    Get PDF
    Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed

    ICRP workshop on the review and revision of the system of radiological protection: a focus on research priorities-feedback from the international community

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: No new data were created or analysed in this study.In September 2022, the International Commission on Radiological Protection (ICRP) organised a workshop in Estoril, Portugal, on the 'Review and Revision of the System of Radiological Protection: A Focus on Research Priorities'. The workshop, which was a side event of the European Radiation Protection Week, offered an opportunity to comment on a recent paper published by ICRP on areas of research to support the System of Radiological Protection. Altogether, about 150 individuals participated in the workshop. After the workshop, 16 of the 30 organisations in formal relations with ICRP provided written feedback. All participants and organisations followed ICRP's view that further research in various areas will offer additional support in improving the System in the short, medium, and long term. In general, it was emphasised that any research should be outcome-focused in that it should improve protection of people or the environment. Many research topics mentioned by the participants were in line with those already identified by ICRP in the paper noted above. In addition, further ideas were expressed such as, for example, that lessons learned during the COVID-19 pandemic with regards to the non-radiological social, economic and environment impacts, should be analysed for their usefulness to enhance radiological protection, and that current protection strategies and application of current radiological protection principles may need to be adapted to military scenarios like those observed recently during the military conflict in the Ukraine or the detonation of a nuclear weapon. On a broader perspective, it was discussed how radiation research and radiological protection can contribute towards the Sustainable Development Goals announced by the United Nations in 2015. This paper summarises the views expressed during the workshop and the major take home messages identified by ICRP

    Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy

    Get PDF
    In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.Postprint (published version

    An ionising radiation-induced specific transcriptional signature of inflammation-associated genes in whole blood from radiotherapy patients: a pilot study.

    No full text
    Background This communication reports the identification of a new panel of transcriptional changes in inflammation-associated genes observed in response to ionising radiation received by radiotherapy patients.Methods Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumours. Nanostring nCounter analysis of transcriptional changes was carried out in samples prior and 24 h post-delivery of the 1st radiotherapy fraction, just prior to the 5th or 6th fraction, and just before the last fraction.Results Statistical analysis with BRB-ArrayTools, GLM MANOVA and nSolver, revealed a radiation responsive panel of genes which varied by patient group (type of cancer) and with time since exposure (as an analogue for dose received), which may be useful as a biomarker of radiation response.Conclusion Further validation in a wider group of patients is ongoing, together with work towards a full understanding of patient specific responses in support of personalised approaches to radiation medicine

    Retrospective biodosimetry of an occupational overexposure-case study

    No full text
    In 2014, Health Canada was approached by the Canadian Nuclear Safety Commission to conduct biodosimetry for a possible overexposure 4 y prior to assessment. Dose estimates were determined by means of two cytogenetic assays, the dicentric chromosome assay (DCA) and translocations as measured by the fluorescent in situ hybridization (FISH). As dicentrics are considered to be unstable over time, the results of the DCA were adjusted to account for the time elapsed between the suspected exposure and sampling. The frequency of damage was then compared to Health Canada's calibration curves, respectively, to calculate dose. In addition, the translocation data were corrected for age-related increases in background. With a half-life of 36 months for dicentric chromosomes taken into consideration, the dose estimates from both assays were in agreement. Due to the uncertainty in the half-life of dicentrics, the FISH assay is considered to be more reliable as a technique for retrospective biodosimetry
    • …
    corecore