17,461 research outputs found
A new catalog of photometric redshifts in the Hubble Deep Field
Using the newly available infrared images of the Hubble Deep Field in the J,
H, and K bands and an optimal photometric method, we have refined a technique
to estimate the redshifts of 1067 galaxies. A detailed comparison of our
results with the spectroscopic redshifts in those cases where the latter are
available shows that this technique gives very good results for bright enough
objects (AB(8140) < 26.0). From a study of the distribution of residuals
(Dz(rms)/(1+z) ~ 0.1 at all redshifts) we conclude that the observed errors are
mainly due to cosmic variance. This very important result allows for the
assessment of errors in quantities to be directly or indirectly measured from
the catalog. We present some of the statistical properties of the ensemble of
galaxies in the catalog, and finish by presenting a list of bright
high-redshift (z ~ 5) candidates extracted from our catalog, together with
recent spectroscopic redshift determinations confirming that two of them are at
z=5.34 and z=5.60.Comment: 28 pages, 12PS+4JPEG figures, aaspp style. Accepted for publication
in The Astrophysical Journal. The catalog, together with a clickable map of
the HDF, Tables 4 and 5 (HTML, LaTeX or ASCII format), and the figures, are
available at http://bat.phys.unsw.edu.au/~fsoto/hdfcat.htm
Galaxy Masses
Galaxy masses play a fundamental role in our understanding of structure
formation models. This review addresses the variety and reliability of mass
estimators that pertain to stars, gas, and dark matter. The different sections
on masses from stellar populations, dynamical masses of gas-rich and gas-poor
galaxies, with some attention paid to our Milky Way, and masses from weak and
strong lensing methods, all provide review material on galaxy masses in a
self-consistent manner.Comment: 145 pages, 28 figures, to appear in Reviews of Modern Physics. Figure
22 is missing here, and Figs. 15, 26-28 are at low resolution. This version
has a slightly different title and some typos fixed in Chapter 5. For the
full review with figures, please consult:
http://www.astro.queensu.ca/~courteau/GalaxyMasses_28apr2014.pd
Structure of Disk Dominated Galaxies I. Bulge/Disk Parameters, Simulations, and Secular Evolution
(Abridged) A robust analysis of galaxy structural parameters, based on the
modeling of bulge and disk brightnesses in the BVRH bandpasses, is presented
for 121 face-on and moderately inclined late-type spirals. Each surface
brightness (SB) profile is decomposed into a sum of a generalized Sersic bulge
and an exponential disk. The reliability and limitations of our bulge-to-disk
(B/D) decompositions are tested with extensive simulations of galaxy brightness
profiles (1D) and images (2D). Galaxy types are divided into 3 classes
according to their SB profile shapes; Freeman Type-I and Type-II, and a third
``Transition'' class for galaxies whose profiles change from Type-II in the
optical to Type-I in the infrared. We discuss possible interpretations of
Freeman Type-II profiles. The Sersic bulge shape parameter for nearby Type-I
late-type spirals shows a range between n=0.1-2 but, on average, the underlying
surface density profile for the bulge and disk of these galaxies is adequately
described by a double-exponential distribution. We confirm a coupling between
the bulge and disk with a scale length ratio r_e/h=0.22+/-0.09, or
h_bulge/h_disk=0.13+/-0.06 for late-type spirals, in agreement with recent
N-body simulations of disk formation and models of secular evolution. This
ratio increases from ~0.20 for late-type spirals to ~0.24 for earlier types.
The similar scaling relations for early and late-type spirals suggest
comparable formation and/or evolution scenarios for disk galaxies of all Hubble
types.Comment: 78 pages with 23 embedded color figures + tables of galaxy structural
parameters. Accepted for publication in the Astrophysical Journal. The
interested reader is strongly encouraged to ignore some of the low res
figures within; instead, download the high resolution version from
http://www.astro.ubc.ca/people/courteau/public/macarthur02_disks.ps.g
Effective temperature and Gilbert damping of a current-driven localized spin
Starting from a model that consists of a semiclassical spin coupled to two
leads we present a microscopic derivation of the Langevin equation for the
direction of the spin. For slowly-changing direction it takes on the form of
the stochastic Landau-Lifschitz-Gilbert equation. We give expressions for the
Gilbert damping parameter and the strength of the fluctuations, including their
bias-voltage dependence. At nonzero bias-voltage the fluctuations and damping
are not related by the fluctuation-dissipation theorem. We find, however, that
in the low-frequency limit it is possible to introduce a voltage-dependent
effective temperature that characterizes the fluctuations in the direction of
the spin, and its transport-steady-state probability distribution function.Comment: 8 pages, 2 figures. v2: published versio
Exploring the Structure of Distant Galaxies with Adaptive Optics on the Keck-II Telescope
We report on the first observation of cosmologically distant field galaxies
with an high order Adaptive Optics (AO) system on an 8-10 meter class
telescope. Two galaxies were observed at 1.6 microns at an angular resolution
as high as 50 milliarcsec using the AO system on the Keck-II telescope. Radial
profiles of both objects are consistent with those of local spiral galaxies and
are decomposed into a classic exponential disk and a central bulge. A
star-forming cluster or companion galaxy as well as a compact core are detected
in one of the galaxies at a redshift of 0.37+/-0.05. We discuss possible
explanations for the core including a small bulge, a nuclear starburst, or an
active nucleus. The same galaxy shows a peak disk surface brightness that is
brighter than local disks of comparable size. These observations demonstrate
the power of AO to reveal details of the morphology of distant faint galaxies
and to explore galaxy evolution.Comment: 5 pages, Latex, 3 figures. Accepted for publication in P.A.S.
Quantum-Statistical Current Correlations in Multi-Lead Chaotic Cavities
Quantum mechanics requires that identical particles are treated as
indistinguishable. This requirement leads to correlations in the fluctuating
properties of a system. Theoretical predictions are made for an experiment on a
multi-lead chaotic quantum dot which can identify exchange effects in
electronic current-current correlations. Interestingly, we find that the
ensemble averaged exchange effects are of the order of the channel number, and
are insensitive to dephasing.Comment: 4 pages REVTEX, including two figure
Strong Balmer lines in old stellar populations: No need for young ages in ellipticals?
Comparing models of Simple Stellar Populations (SSP) with observed line
strengths generally provides a tool to break the age-metallicity degeneracy in
elliptical galaxies. Due to the wide range of Balmer line strengths observed,
ellipticals have been interpreted to exhibit an appreciable scatter in age. In
this paper, we analyze Composite Stellar Population models with a simple mix of
an old metal-rich and an old metal-poor component. We show that these models
simultaneously produce strong Balmer lines and strong metallic lines without
invoking a young population. The key to this result is that our models are
based on SSPs that better match the steep increase of Hbeta in metal-poor
globular clusters than models in the literature. Hence, the scatter of Hbeta
observed in cluster and luminous field elliptical galaxies can be explained by
a spread in the metallicity of old stellar populations. We check our model with
respect to the so-called G-dwarf problem in ellipticals. For a galaxy subsample
covering a large range in UV-V colors we demonstrate that the addition of an
old metal-poor subcomponent does not invalidate other observational constraints
like colors and the flux in the mid-UV.Comment: Accepted for publication in ApJ Main Journal, 9 pages, 5 figure
Morphology of the 12-micron Seyfert Galaxies: II. Optical and Near-Infrared Image Atlas
We present 263 optical and near-infrared (NIR) images for 42 Seyfert 1s and
48 Seyfert 2s, selected from the Extended 12-micron Galaxy Sample.
Elliptically-averaged profiles are derived from the images, and isophotal radii
and magnitudes are calculated from these. We also report virtual aperture
photometry, that judging from comparison with previous work, is accurate to
roughly 0.05mag in the optical, and 0.07mag in the NIR. Our B-band isophotal
magnitude and radii, obtained from ellipse fitting, are in good agreement with
those of RC3. When compared with the B band, V, I, J, and K isophotal diameters
show that the colors in the outer regions of Seyferts are consistent with the
colors of normal spirals. Differences in the integrated isophotal colors and
comparison with a simple model show that the active nucleus+bulge is stronger
and redder in the NIR than in the optical. Finally, roughly estimated Seyfert
disk surface brightnesses are significantly brighter in B and K than those in
normal spirals of similar morphological type.Comment: 17 pgs including figures; Table 2 is a separate file. Complete Figure
1 is available by contacting the authors. Accepted for publication in ApJ
Relativistic Brueckner-Hartree-Fock calculations with explicit intermediate negative energy states
In a relativistic Brueckner-Hartree-Fock calculation we include explicit
negative-energy states in the two-body propagator. This is achieved by using
the Gross spectator-equation, modified by medium effects. Qualitatively our
results compare well with other RBHF calculations. In some details significant
differences occur, e.g, our equation of state is stiffer and the momentum
dependence of the self-energy components is stronger than found in a reference
calculation without intermediate negative energy states.Comment: 13 pages Revtex, 5 figures included seperatel
- …