16,780 research outputs found

    X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North

    Full text link
    We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble Deep Field North (HDF-N) region. By excluding all sources with significant detected X-ray emission in the 2 Ms Chandra observation we are able to examine the properties of galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is \~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between X-ray emission and rest-frame UV emission. A correlation between the ratio of X-ray-to-UV emission and UV colour is also seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray emission offers a view of star formation regions that is relatively unaffected by extinction, results such as these can be used to evaluate the effects of dust on the UV emission from high-z galaxies. For instance we derive a relationship for estimating UV attenuation corrections as a function of colour excess. The observed relation is inconsistent with the Calzetti et al. (2000) reddening law which over predicts the range in UV attenuation corrections by a factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).Comment: 10 pages, 7 figures, accepted for publication in MNRA

    Composition of Jupiter irregular satellites sheds light on their origin

    Get PDF
    Irregular satellites of Jupiter with their highly eccentric, inclined and distant orbits suggest that their capture took place just before the giant planet migration. We aim to improve our understanding of the surface composition of irregular satellites of Jupiter to gain insight into a narrow time window when our Solar System was forming. We observed three Jovian irregular satellites, Himalia, Elara, and Carme, using a medium-resolution 0.8-5.5 micro m spectrograph on the National Aeronautics and Space Administration (NASA) Infrared Telescope Facility (IRTF). Using a linear spectral unmixing model we have constrained the major mineral phases on the surface of these three bodies. Our results confirm that the surface of Himalia, Elara, and Carme are dominated by opaque materials such as those seen in carbonaceous chondrite meteorites. Our spectral modeling of NIR spectra of Himalia and Elara confirm that their surface composition is the same and magnetite is the dominant mineral. A comparison of the spectral shape of Himalia with the two large main C-type asteroids, Themis (D 176 km) and Europa (D 352 km), suggests surface composition similar to Europa. The NIR spectrum of Carme exhibits blue slope up to 1.5 microm and is spectrally distinct from those of Himalia and Elara. Our model suggests that it is compositionally similar to amorphous carbon. Himalia and Elara are compositionally similar but differ significantly from Carme. These results support the hypotheses that the Jupiter irregular satellites are captured bodies that were subject to further breakup events and clustered as families based on their similar physical and surface compositions

    Virus Sharing, Genetic Sequencing, and Global Health Security

    Get PDF
    The WHO’s Pandemic Influenza Preparedness (PIP) Framework was a milestone global agreement designed to promote the international sharing of biological samples to develop vaccines, while that ensuring poorer countries would have access to those vaccines. Since the PIP Framework was negotiated, scientists have developed the capacity to use genetic sequencing data (GSD) to develop synthetic viruses rapidly for product development of life-saving technologies in a time-sensitive global emergency—threatening to unravel the Framework. Access to GSD may also have major implications for biosecurity, biosafety, and intellectual property (IP). By rendering the physical transfer of viruses antiquated, GSD may also undermine the effectiveness of the PIP Framework itself, with disproportionate impacts on poorer countries. We examine the changes that need to be made to the PIP Framework to address the growing likelihood that GSD might be shared instead of physical virus samples. We also propose that the international community harness this opportunity to expand the scope of the PIP Framework beyond only influenza viruses with pandemic potential. In light of non-influenza pandemic threats such as the Middle East Respiratory Syndrome (MERS) and Ebola, we call for an international agreement on the sharing of the benefits of research – such as vaccines and treatments – for other infectious diseases to ensure not only a more secure and healthy world, but also a more just world, for humanity

    Cloud Based Student Repository System

    Get PDF
    Learning through research brings better outcome. In this project, our main motive is to provide a flexible web developed OPAC (Online Public Access Catalogue) for users to gain allusion of projects which is already being exist in the Catalogue. For a developer learning with references helps to design desired outcome for that we are providing a complete erudition of the enduring project by the organization through OPAC. The users are able to upload the video and documents related to the project and also can scrutinize the existed projects. For that different framework are used such as python flask, Azure cloud, Collaborative Filtering etc. These frameworks are able to store and provide better methodology of learning. Therefore, this paper aim-at providing simple interface for gathering information regarding designing of project

    Properties of cellulose/Thespesia Lampas short fibers bio-composite films

    Get PDF
    Abstract: Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia Lampas plant as reinforcement, the green composite films were prepared. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content

    Optical Selection of Galaxies at Redshifts 1<z<3

    Full text link
    Few galaxies have been found between the redshift ranges z < ~1 probed by magnitude-limited surveys and z > ~3 probed by Lyman-break surveys. Comparison of galaxy samples at lower and higher redshift suggests that large numbers of stars were born and the Hubble sequence began to take shape at the intermediate redshifts 1<z<3, but observational challenges have prevented us from observing the process in much detail. We present simple and efficient strategies that can be used to find large numbers of galaxies throughout this important but unexplored redshift range. All the strategies are based on selecting galaxies for spectroscopy on the basis of their colors in ground-based images taken through a small number of optical filters: GRi for redshifts 0.85<z<1.15, GRz for 1<z<1.5, and UGR for 1.4<z<2.1 and 1.9<z<2.7. The performance of our strategies is quantified empirically through spectroscopy of more than 2000 galaxies at 1<z<3.5. We estimate that more than half of the UV-luminosity density at 1<z<3 is produced by galaxies that satisfy our color-selection criteria. Our methodology is described in detail, allowing readers to devise analogous selection criteria for other optical filter sets.Comment: 13 pages including 20 figures. Accepted for publication in the Ap

    Strong Nebular Line Ratios in the Spectra of z~2-3 Star-forming Galaxies: First Results from KBSS-MOSFIRE

    Get PDF
    We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0< z < 2.6, star-formation rates 2 < SFR < 200 M_sun/yr, and stellar masses 8.6 < log(M*/M_sun) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z~2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits a disjoint, yet similarly tight, relationship between the ratios [NII]6585/Halpha and [OIII]/Hbeta as compared to local galaxies. Using photoionization models, we argue that the offset of the z~2.3 locus relative to z~ 0 is explained by a combination of harder ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H than applies to most local galaxies, and that the position of a galaxy along the z~2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net ionizing radiation field resembles a blackbody with effective temperature T_eff = 50000-60000 K and N/O close to the solar value at all O/H. We critically assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities, and consider the implications of the small intrinsic scatter in the empirical relationship between excitation-sensitive line indices and stellar mass (i.e., the "mass-metallicity" relation), at z~2.3.Comment: 41 pages, 25 figures, accepted for publication in the Astrophysical Journal. Version with full-resolution figures available at http://www.astro.caltech.edu/~ccs/mos_bpt_submit.pd
    • …
    corecore