Formation Constants of Binary Complexes of Lanthanides with 2-Hydroxymethylbenzimidazole

A NAGENDRAM, K L OMPRAKASH, A V CHANDRA PAL* \& MLN REDDY

Department of Chemistry, Osmania University, Hyderabad 500007
Received 19 March 1987; revised and accepted 16 July 1987
Proton-ligand and metal-ligand formation constants of binary complexes of $\mathbf{L a}($ III $), \operatorname{Pr}(\mathrm{III}), \mathrm{Nd}(\mathrm{III}), \mathrm{Gd}(\mathrm{III}), \mathrm{Dy}($ III $)$ and $\mathrm{Y}($ III) with 2-hydroxymethylbenzimidazole have been determined $p \mathrm{H}$-metrically in $50 \% \mathrm{v} / \mathrm{v}$ aq dioxane medium at 30°, 40° and $50^{\circ} \mathrm{C}$ and $I=0.1 \mathrm{M}\left(\mathrm{NaClO}_{4}\right)$. The thermodynamic parameters of complex formation have been evaluated. Stabilities ($\log \beta_{2}$ values) of the chelates increase with decrease in ionic radius of the metal $[\mathrm{Dy}(\mathrm{III})>\mathrm{Gd}(\mathrm{III})>\mathrm{Y}(\mathrm{III})>\mathrm{Nd}($ III $)>-$ $\operatorname{Pr}(\mathrm{III})>\mathrm{La}(\mathrm{III})]$.

In continuation of our studies on the complexing tendencies of benzimidazoles ${ }^{1-3}$, we report herein the formation constants of binary complexes of the type ML_{2} [where $\mathrm{M}=\mathrm{La}(\mathrm{III}), \mathrm{Pr}(\mathrm{III}), \mathrm{Nd}(\mathrm{III})$, $\mathrm{Gd}(\mathrm{III}), \mathrm{Dy}(\mathrm{III}), \mathrm{Y}(\mathrm{III})$ and $\mathrm{L}=2$-hydroxymethylbenzimidazole (HMB)] in $50 \% \mathrm{v} / \mathrm{v}$ aq dioxane medium and $\mathrm{I}=0.1 \mathrm{M}\left(\mathrm{NaClO}_{4}\right)$.

The proton-ligand and metal-ligand formation constants for binary systems were determined using Irving-Rossotti pH titration technique ${ }^{4}$. The general experimental details were the same as discussed earlier ${ }^{1-3}$. The $p \mathrm{H}$ meter readings (B) in the aq dioxane media were corrected by the method of Van Uitert and Haas ${ }^{5}$.

From the proton-ligand formation curves $\left(0.1<\bar{n}_{\mathrm{H}}<1.8\right)$ the proton-ligand formation constants $\log K_{\mathrm{OH}}$ and $\log K_{\mathrm{NH}}$ evaluated at 30° (12.59 and 5.03), 40° (12.12 and 4.74) and $50^{\circ} \mathrm{C}$ (11.46 and 4.52) are in accordance with the values reported by Lane and Durham ${ }^{6}$.

From the formation curve (\bar{n} vs $p \mathrm{~L}$), it is found that the $\log K_{1}$ and $\log K_{2}$ do not differ much from one another and hence they have been evaluated by the least-square treatment ${ }^{4}$ of Eq. (1)
$\frac{\bar{n}}{(\bar{n}-1)(\mathrm{L})}=\frac{(2-\bar{n})(\mathrm{L})}{(\bar{n}-1)} \beta_{2}-K_{1}$
Calculations using this method resulted in negative values of K_{1} (positive intercept) and hence only $\log \beta_{2}$ values are reported in Table 1.

Lane and Quinlan ${ }^{7}$ have reported the formation of only $1: 1$ complexes of $\mathrm{La}(\mathrm{III})$ with 2 -hydroxy-

Table 1-Formation Constants $\left(\log \boldsymbol{\beta}_{2}\right)$ and Thermodynamic Parameters of Ln-HMB Chelates in $50 \% \mathrm{v} / \mathrm{v}$ aq dioxane medium

Temp(\mathbf{K})	$\left[I=0.1 ~ M\left(\mathrm{NaClO}_{4}\right)\right]$					$\mathrm{La}(\mathrm{III})$
	Dy(III)	$\mathrm{Gd}(\mathrm{III})$	Y(III)	$\mathrm{Nd}(\mathrm{III})$	$\operatorname{Pr}(\mathrm{III})$	
	$\log \beta_{2}$					
303	16.79	16.55	16.47	16.11	15.89	15.36
313	16.63	16.44	16.38	16.01	15.81	15.30
323	16.48	16.35	16.30	15.92	15.74	15.25
$-\Delta G\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ at 303 K$)$						
	97.1	96.0	95.5	93.4	92.2	89.1
- $\Delta H\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$						
	28.9	18.8	16.3	17.5	15.3	9.8
$\Delta S\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1} \text { at } 303 \mathrm{~K}\right)$						
	226.1	254.6	261.5	250.0	253.0	261.5

methylnaphthimidazole. The formation of 1:2 complexes of $\mathrm{Ln}(\mathrm{III})$ with HMB in the present investigation is quite reasonable because of the lesser steric hindrance of benzimidazole moiety as compared to a naphthimidazole moiety.

The order of stabilities $\left(\log \beta_{2}\right)$ of $\operatorname{Ln}(\mathbf{I I I})-\mathrm{HMB}$ complexes $[\mathrm{Dy}(\mathrm{IIII})>\mathrm{Gd}(\mathrm{III})>\mathrm{Y}(\mathrm{III}) \quad>\mathrm{Nd}($ III $)>$ $\mathrm{Pr}(\mathrm{III})>\mathrm{La}(\mathrm{III})]$ is almost in the increasing order of their Z^{2} / r values indicating that the metal-ligand bond is primarily ionic.

The thermodynamic parameters, $\Delta G, \Delta H$ and ΔS of formation of $\mathrm{Ln}-\mathrm{HMB}$ complexes have been evaluated using well known equations and are presented in Table 1. The stabilities are found to decrease with increase in temperature suggesting that the interaction of $\operatorname{Ln}(\mathrm{III})$ ions with the ligand is exothermic in nature.

One of the authors ($\mathrm{A} \mathbf{N}$) is grateful to the CSIR, New Delhi, for the award of a senior research fellowship.

References

1 Omprakash K L, Chandra Pal A V \& Reddy M L N, Indian J Chem, (a) 21 A (1982) 322; (b) 22A (1983) 546.
2 Omprakash K L, Goverdhan Reddy K, Chandra Pal A V \& Reddy M L N, Indian J Chem, 23A (1984) 79.
3 Goverdhan Reddy K, Omprakash K L, Chandra Pal A V \& Reddy M L N, Indian J Chem, 24A (1985) 161.
4 (a) Irving H \& Rossotti H S, J chem Soc, (1954) 2904; (b) (1953) 3397.

5 Van Uitert L G \& Haas C G, J Am chem Soc, 75 (1953) 451.

6 Lane T J \& Durham H B, Inorg Chem, 2 (1963) 632.
7 Lane T J \& Quinlan K P, J Am chem Soc, 82 (1960) 2997.

