1,446 research outputs found

    False discovery rate: setting the probability of false claim of detection

    Full text link
    When testing multiple hypothesis in a survey --e.g. many different source locations, template waveforms, and so on-- the final result consists in a set of confidence intervals, each one at a desired confidence level. But the probability that at least one of these intervals does not cover the true value increases with the number of trials. With a sufficiently large array of confidence intervals, one can be sure that at least one is missing the true value. In particular, the probability of false claim of detection becomes not negligible. In order to compensate for this, one should increase the confidence level, at the price of a reduced detection power. False discovery rate control is a relatively new statistical procedure that bounds the number of mistakes made when performing multiple hypothesis tests. We shall review this method, discussing exercise applications to the field of gravitational wave surveys.Comment: 7 pages, 3 table, 3 figures. Prepared for the Proceedings of GWDAW 9 (http://lappc-in39.in2p3.fr/GWDAW9) A new section was added with a numerical example, along with two tables and a figure related to the new section. Many smaller revisions to improve readibilit

    The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotamicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA

    Get PDF
    Previous studies have suggested that regulation of the enzymes of ammonia assimilation in human colonic Bacteroides species is coordinated differently than in other eubacteria. The gene encoding an NAD(P)H-dependent glutamate dehydrogenase (gdhA) in Bacteroides thetaiotaomicron was tinned and expressed in Escherichia coli by mutant complementation from the recombinant plasmid pANS100. Examination of the predicted GdhA amino acid sequence revealed that this enzyme possesses motifs typical of the family I-type hexameric GDH proteins. Northern blot analysis with a gdhA-specific probe indicated that a single transcript with an electrophoretic mobility of ~1.6 kb was produced in both B. thetaiotaomicron and E. coli gdhA transformants. Although gdhA transcription was unaffected, no GdhA enzyme activity could be detected in E. coli transformants when smaller DNA fragments from pANS100, which contained the entire gdhA gene, were analyzed. Enzyme activity was restored if these E. coli strains were cotransformed with a second plasmid, which contained a 3-kb segment of DNA located downstream of the gdhA coding region. Frameshift mutagenesis within the DNA downstream of gdhA in pANS100 also resulted in the loss of GdhA enzyme activity. Collectively, these results are interpreted as evidence for the role of an additional gene product(s) in modulating the activity of GDH enzyme activity. Insertional mutagenesis experiments which led to disruption of the gdhA gene on the B. thetaiotaomicron chromosome indicated that gdhA mutants were not glutamate auxotrophs, but attempts to isolate similar mutants with insertion mutations in the region downstream of the gdhA gene were unsuccessful

    Tearing Out the Income Tax by the (Grass)Roots

    Get PDF
    Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :

    Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

    Full text link
    In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles

    Correlation between Gamma-Ray bursts and Gravitational Waves

    Get PDF
    The cosmological origin of γ\gamma-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \bbox{hRMS≤1.5×10−18h_{\text{RMS}} \leq 1.5 \times 10^{-18}} on the averaged amplitude of gravitational waves associated with γ\gamma-ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Biographies

    Get PDF
    There is a prevailing bias, even amongst the actors directly involved, to consider activities falling under the migration-development banner as bipolar engagements, i.e. activities linking a country of origin of migrants to their country of present residence. Such conceptualisations assume the nation-state as the default frame of reference. Whilst progress has certainly been made towards a necessary sophistication of migration related issues in policy thinking and related academic research, the migration-development nexus remains something still often considered as essentially something to approach within a singular or bipolar nation-state framework. This can be seen in studies of potential policy interventions related to transnational flows such as human capital transfers, remittance flows and community development projects initiatives. Taking the case of the Transnational Synergy for Cooperation and Development (TRANSCODE) Programme, and focusing on empirical insights gained with this programme in relation to its conceptual underpinnings, we explore alternative modes of incorporating migration and development. This article thus seeks to provide insights in opportunities for alternative initiatives resulting out of cross-fertilization of experiences and ideas between migrant organisations and other actors engaged in migration and development efforts

    Homogeneous nucleation of dislocations as a pattern formation phenomenon

    Full text link
    Dislocation nucleation in homogeneous crystals initially unfolds as a linear symmetry-breaking elastic instability. In the absence of explicit nucleation centers, such instability develops simultaneously all over the crystal and due to the dominance of long range elastic interactions it advances into the nonlinear stage as a collective phenomenon through pattern formation. In this paper we use a novel mesoscopic tensorial model (MTM) of crystal plasticity to study the delicate role of crystallographic symmetry in the development of the dislocation nucleation patterns in defect free crystals loaded in a hard device. The model is formulated in 2D and we systematically compare lattices with square and triangular symmetry. To avoid the prevalence of the conventional plastic mechanisms, we consider the loading paths represented by pure shears applied on the boundary of the otherwise unloaded body. These loading protocols can be qualified as exploiting the 'softest' and the 'hardest' directions and we show that the associated dislocation patterns are strikingly different
    • …
    corecore