1,628 research outputs found
Physics Reach of High-Energy and High-Statistics IceCube Atmospheric Neutrino Data
This paper investigates the physics reach of the IceCube neutrino detector
when it will have collected a data set of order one million atmospheric
neutrinos with energies in the 0.1 \sim 10^4 TeV range. The paper consists of
three parts. We first demonstrate how to simulate the detector performance
using relatively simple analytic methods. Because of the high energies of the
neutrinos, their oscillations, propagation in the Earth and regeneration due to
\tau decay must be treated in a coherent way. We set up the formalism to do
this and discuss the implications. In a final section we apply the methods
developed to evaluate the potential of IceCube to study new physics beyond
neutrino oscillations. Not surprisingly, because of the increased energy and
statistics over present experiments, existing bounds on violations of the
equivalence principle and of Lorentz invariance can be improved by over two
orders of magnitude. The methods developed can be readily applied to other
non-conventional physics associated with neutrinos.Comment: 21 pages, 7 figures, Revtex
Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of
Review is dedicated studies of phase equilibria in the systems based on rare earth elements and 3d transition metals. It’s highlighted several structural families of these compounds and is shown that many were found interesting properties for practical application, such as high conductivity up to the superconducting state, magnetic properties, catalytic activity of the processes of afterburning of exhaust gases, the high mobility in the oxygen sublattice and more
Prospects for identifying the sources of the Galactic cosmic rays with IceCube
We quantitatively address whether IceCube, a kilometer-scale neutrino
detector under construction at the South Pole, can observe neutrinos pointing
back at the accelerators of the Galactic cosmic rays. The photon flux from
candidate sources identified by the Milagro detector in a survey of the TeV sky
is consistent with the flux expected from a typical cosmic-ray generating
supernova remnant interacting with the interstellar medium. We show here that
IceCube can provide incontrovertible evidence of cosmic-ray acceleration in
these sources by detecting neutrinos. We find that the signal is optimally
identified by specializing to events with energies above 30 TeV where the
atmospheric neutrino background is low. We conclude that evidence for a
correlation between the Milagro and IceCube sky maps should be conclusive after
several years.Comment: 5 pages, 5 figures; part of the text and some figures have changed,
conclusions remain the same; equals journal versio
Signatures of cosmic tau-neutrinos
The importance and signatures of cosmic tau--(anti)neutrinos have been
studied for upward-- and downward--going and hadronic shower
event rates relevant for present and future underground water or ice detectors,
utilizing the unique and reliable ultrasmall-- predictions of the dynamical
(radiative) parton model. The upward--going event rates
calculated just from cosmic fluxes are sizeably
enhanced by taking into account cosmic fluxes
and their associated fluxes as well. The coupled transport
equations for the upward--going flux traversing
the Earth imply an enhancement of the attenuated and regenerated
flux typically around GeV with respect
to the initial cosmic flux. This enhancement turns out to be smaller than
obtained so far, in particular for flatter initial cosmic fluxes behaving like
. Downward--going events and in particular the
background--free and unique hadronic `double bang' and `lollipop' events allow
to test downward--going cosmic fluxes up to
about GeV.Comment: 32 pages, 6 figures; Added reference
Search of low-dimensional magnetics on the basis of structural data: spin-1/2 antiferromagnetic zigzag chain compounds In2VO5, beta-Sr(VOAsO4)2,(NH4,K)2VOF4 and alpha-ZnV3O8
A new technique for searching low-dimensional compounds on the basis of
structural data is presented. The sign and strength of all magnetic couplings
at distances up to 12 A in five predicted new antiferromagnetic zigzag spin-1/2
chain compounds In2VO5, beta-Sr(VOAsO4)2, (NH4)2VOF4, K2VOF4 and alpha-ZnV3O8
were calculated. It was stated that in the compound In2VO5 zigzag spin chains
are frustrated, since the ratio (J2/J1) of competing antiferromagnetic (AF)
nearest- (J1) and AF next-to-nearest-neighbour (J2) couplings is equal to 1.68
that exceeds the Majumdar-Ghosh point by 1/2. In other compounds the zigzag
spin chains are AF magnetically ordered single chains as value of ratios J2/J1
is close to zero. The interchain couplings were analyzed in detail.Comment: 14 pages, 6 figure, 1 table, minor change
Radiography of the Earth's Core and Mantle with Atmospheric Neutrinos
A measurement of the absorption of neutrinos with energies in excess of 10
TeV when traversing the Earth is capable of revealing its density distribution.
Unfortunately, the existence of beams with sufficient luminosity for the task
has been ruled out by the AMANDA South Pole neutrino telescope. In this letter
we point out that, with the advent of second-generation kilometer-scale
neutrino detectors, the idea of studying the internal structure of the Earth
may be revived using atmospheric neutrinos instead.Comment: 4 pages, LaTeX file using RevTEX4, 2 figures and 1 table included.
Matches published versio
On the transport equations of cosmic neutrinos passing through Earth and secondary nu_mu fluxes
The convergence of the iterative solutions of the transport equations of
cosmic muon and tau neutrinos propagating through Earth is studied and
analyzed. For achieving a fast convergence of the iterative solutions of the
coupled transport equations of nu_tau, nubar_tau and the associated tau^{\pm}
fluxes, a new semi-analytic input algorithm is presented where the peculiar
tau-decay contributions are implemented already in the initial zeroth order
input. Furthermore, the common single transport equation for muon neutrinos is
generalized by taking into account the contributions of secondary nu_mu and
nubar_mu fluxes due to the prompt tau-decay tau -> nu_mu initiated by the
associated tau flux. Differential and total nadir angle integrated upward-going
mu^- + mu^+ event rates are presented for underground neutrino telescopes and
compared with the muon rates initiated by the primary nu_mu, nu_tau and tau
fluxes.Comment: Version to appear in PR
Prompt muon contribution to the flux underwater
We present high energy spectra and zenith-angle distributions of the
atmospheric muons computed for the depths of the locations of the underwater
neutrino telescopes. We compare the calculations with the data obtained in the
Baikal and the AMANDA muon experiments. The prompt muon contribution to the
muon flux underwater due to recent perturbative QCD-based models of the charm
production is expected to be observable at depths of the large underwater
neutrino telescopes. This appears to be probable even at rather shallow depths
(1-2 km), provided that the energy threshold for muon detection is raised above
TeV.Comment: 7 pages, RevTeX, 7 eps figures, final version to be published in
Phys.Rev.D; a few changes made in the text and the figures, an approximation
formula for muon spectra at the sea level, the muon zenith-angle distribution
table data and references adde
- …
